629 resultados para RPM
Resumo:
A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs.
Resumo:
Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.
Resumo:
We observed 82 healthy subjects, from both sexes, aged between 19 and 77 years. All subjects performed two different tests: for being scientifically acknowledged, the first one was used as a reference and it was a stress test (CPX). During the entire test, heart rate and gas exchange were recorded continuously; the second, the actual object of this study, was a submaximal test (TOP). Only heart rate was recorded continuously. The main purpose was to determinate an index of physical fitness as result of TOP. CPX test allowed us to individuate anaerobic threshold. We used an incremental protocol of 10/20 Watt/min, different by age. For our TOP test we used an RHC400 UPRIGHT BIKE, by Air Machine. Each subject was monitored for heart frequency. After 2 minutes of resting period there was a first step: 3 minutes of pedalling at a constant rate of 60 RPM, (40 watts for elder subjects and 60 watts for the younger ones). Then, the subject was allowed to rest for a recovery phase of 5 minutes. Third and last step consisted of 3 minutes of pedalling again at 60 RPM but now set to 60 watts for elder subjects and 80 watts for the young subjects. Finally another five minutes of recovery. A good correlation was found between TOP and CPX results especially between punctua l heart rate reserve (HRR’) and anaerobic threshold parameters such as Watt, VO2, VCO2 . HRR’ was obtained by subtracting maximal heart rate during TOP from maximal theoretic heart rate (206,9-(0,67*age)). Data were analyzed through cluster analysis in order to obtain 3 homogeneous groups. The first group contains the least fit subjects (inactive, women, elderly). The other groups contain the “average fit” and the fittest subjects (active, men, younger). Concordance between test resulted in 83,23%. Afterwards, a linear combinations of the most relevant variables gave us a formula to classify people in the correct group. The most relevant result is that this submaximal test is able to discriminate subjects with different physical condition and to provide information (index) about physical fitness through HRR’. Compared to a traditional incremental stress test, the very low load of TOP, short duration and extended resting period, make this new method suitable to very different people. To better define the TOP index, it is necessary to enlarge our subject sample especially by diversifying the age range.
Resumo:
Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.
Resumo:
Several methods to reduce respiratory-induced motion have been described in literature, with the goal of increasing accuracy of treatment to minimize normal tissue toxicity or increase dose to the target volume. We analyzed two different techniques of respiratory gating: the deep inspiration breath hold technique and the respiratory gating using the Real-time Position Management (RPM) system. The first method is a self-gating technique in which radiation treatment take place during a phase of breath-holding. The second technique use a reflective marker placed on the patient’s anterior surface. The motion of the marker is tracked using a camera interfaced to a computer. The gating thresholds are set when the tumor is in the desired portion of the respiratory cycle. These thresholds determine when the gating system turns the treatment beam on and off. We compared both techniques with a standard external radiation treatment. The dosimetric analysis has led to considerable advantage of these methods compared to the external radiation treatment, particularly in reducing the dose to the lung.
Resumo:
In dieser Arbeit wurden zwei Wege zur sauer katalysierten Synthese von Polyorganosiloxan-Kern-Schale-Nanopartikeln mit monomodaler Größenverteilung erarbeitet. Zum einen führt eine Erhöhung der Rührergeschwindigkeit auf 14000 rpm unter Verwendung eines Ultrathorax, während der ersten Stunde der Kondensation des Kernes zu Nanokugeln mit einer monomodalen Größenverteilung mit einem hydrodynamischen Radius von 33.1 nm +/- 22%. Zum anderen eröffnete die Reduktion des Flottenverhältnisses S, d.h. des Verhältnisses von Tensid- zu Monomermenge, von S=0.02 auf S=0.001 einen zweiten Weg zur Synthese von Nanokugeln mit monomodaler Größenverteilung. Der Radius dieser Kugeln beträgt 54.2 nm +/- 20%. Durch diese beiden Synthesewege sind Polyorganosiloxan-Nanokugeln in zwei verschiedenen Größen zugänglich. Durch 29Si-NMR-Messungen der Kerndispersion konnte gezeigt werden, dass die Ursache der bimodalen Größenverteilung der Polyorganosiloxan-Nanokugeln in der Synthese der Kerndispersion zu finden ist. Aus den hieraus ermittelten Ergebnissen geht hervor, dass sich während der sauer katalysierten Kondensation von Diethoxydimethylsilan neben den PDMS-Ketten auch zyklische Kondensationsprodukte bilden. Die während der Reaktion fortschreitende Bildung von Zyklen - insbesondere von Vierringen - bewirkt eine Phasenseparation der Dispersion. Dies führt zur beobachteten Bildung der bimodalen Größenverteilung der Polyorganosiloxan-Nanokugeln. Wird die Rührergeschwindigkeit auf 14000 rpm während der ersten Stunde der Kondensation des Kernes erhöht, wird eine verminderte Ringbildung gefunden. Der erhöhte Energieeintrag und die damit verbundene bessere Durchmischung der Dispersion während der ersten Stunde der Kondensation des Kerns führt bevorzugt zum Kettenwachstum, so dass die Tendenz zur Ringbildung verringert wird. Es tritt keine Phasenseparation auf, wodurch die beobachtete monomodale Größenverteilung der Nanokugeln erklärt wird. Wird das Flottenverhältnis reduziert und somit der pH-Wert der Lösung erhöht, werden bevorzugt offenkettige PDMS-Produkte gebildet. Die Bildung von Vierringen erfolgt nicht, Ringe höherer Ordnung werden nur in untergeordneter Menge gebildet. Es erfolgt keine Phasenseparation der Dispersion und eine monomodale Größenverteilung der Polyorganosiloxan-Nanokugeln wird erhalten. Die durch Erniedrigung des Flottenverhältnisses synthetisierten Polyorganosiloxan-Nanokugeln zeigten in AFM-Experimenten interessante Eigenschaften. So ist es möglich, die Nanokugeln auf einer Mica-Oberfläche mittels der AFM-Spitze zu manipulieren, ohne sie hierbei sie degradieren. Die sauer katalysierte Synthese ermöglicht die Einführung von basenlabilen Hydridgruppen in die Polyorganosiloxan-Nanokugeln. Ausgehend von in organischen Lösungsmitteln redispergierbaren Polyorganosiloxan-Nanokugeln, deren Oberfläche mit Hydridgruppen funktionalisiert wurde, konnten durch Hydrosilylierung mit allylterminiertem Polyethylenoxid wasserlösliche potentielle Nanokontainer synthetisiert werden.
Resumo:
MATERIALI E METODI: Tra il 2012 e il 2013, abbiamo analizzato in uno studio prospettico i dati di 48 pazienti sottoposti a ThuLEP con approccio autodidatta. I pazienti sono stati rivalutati a 3, 6, 12 e 24 mesi con la valutazione del PSA, il residuo post-minzionale (RPM), l'uroflussometria (Qmax), l'ecografia transrettale e questionari validati (IPSS: international prostate symptom score e QoL: quality of life) RISULTATI: Il volume medio della prostata è di 63 ± 5,3 ml. Il tempo operatorio medio è stato di 127,58 ± 28.50 minuti. Il peso medio del tessuto asportato è stato di 30,40 ± 13,90 gr. A 6 mesi dopo l'intervento l'RPM medio è diminuito da 165,13 ± 80,15 ml a 7,78 ± 29.19 ml, mentre il Qmax medio è aumentato da 5.75 ± 1.67ml / s a 18.1 ± 5.27 ml / s. I valori medi dei IPSS e QoL hanno dimostrato un progressivo miglioramento: da 19.15 (IQR: 2-31) e 4 (IQR: 1-6) nel preoperatorio a 6.04 (IQR: 1-20) e 1.13 (IQR: 1-4), rispettivamente. Durante la curva di apprendimento si è assistito ad un progressivo aumento del peso del tessuto enucleato e ad una progressiva riduzione del tempo di ospedalizzazione e di cateterismo. Tra le principali complicanze ricordiamo un tasso di incontinenza transitoria del 12,5% a 3 mesi e del 2.1% a 12 mesi. CONCLUSIONI: ThuLEP rappresenta una tecnica chirurgica efficace, sicura e riproducibile indipendentemente dalle dimensioni della prostata. I nostri dati suggeriscono che la ThuLEP offre un miglioramento significativo dei parametri funzionali comparabili con le tecniche tradizionali, nonostante una lunga curva di apprendimento.
Resumo:
Nel presente lavoro di tesi, in seguito ad acquisizioni di dati effettuate nella sala prove del "Laboratorio di Macchine e Propulsione" della Scuola di Ingegneria e Architettura di Forlì sul turboshaft Allison 250 C18, in una prima fase sono state ricavate le mappe prestazionali dei singoli componenti del motore, elaborando i dati sperimentali in ambiente MatLab. Le acquisizioni sono state effettuate mediante l'utilizzo di sensori di pressione, temperatura e velocità installati in precedenza sul motore e opportunamente calibrati. In seguito alla realizzazione delle mappe prestazionali, si è passati all'allestimento completo di un modello dinamico in ambiente Simulink, del motore Allison 250 C18. Tale modello riproduce, in opportuni blocchi, ciascun componente facente parte della motorizzazione. Ogni blocco riceve in ingresso le caratteristiche fisiche di interesse del flusso (temperatura, pressione, calore specifico a pressione costante e gamma) provenienti dal blocco precedente tramite un "filo", le rielabora al suo interno risolvendo le equazioni tipiche di ciascun componente e interpolando le mappe di prestazione ricavate precedentemente in MatLab, e le invia come input al blocco successivo o in retroazione ai blocchi precedenti. In ogni blocco è stato realizzato un sistema di dinamica di pressione che, ad ogni istante, risolve un'equazione differenziale dipendente dalla differenza di portata a monte e a valle di un componente e dal volume di controllo, che restituisce il valore di pressione in uscita proporzionale alla variazione di portata stessa. Nel presente lavoro di tesi si è cercato di stabilizzare questo complesso sistema in una condizione di progetto, fissata a 30000 rpm del gruppo gas generator. Un sistema di controllo del numero di giri tramite variazione di portata di combustibile è stato realizzato al fine di poter, in futuro, far funzionare il modello anche fuori dalla condizione di progetto e riuscire a simulare l'andamento delle prove sperimentali reali.
Resumo:
Come ogni campo dell'ingegneria, anche quello inerente allo sviluppo di motori aerei, è in continuo sviluppo, e, di volta in volta, la progettazione richiede nuove soluzioni per rendere sempre più efficienti ed affidabili i velivoli, mantenendo ridotti i costi di produzione e manutenzione. In particolare, si è pensato di porre rimedio a queste molteplici necessità introducendo l'utilizzo di motori diesel di derivazione automobilistica: economici dal punto di vista della manutenzione e della produzione, in quanto largamente diffusi e testati, ben si prestano all'adattamento ad uso aeronautico. Nel caso specifico del progetto che intendo affrontare, si tratta di un motore Audi V12 tdi, elaborato fino a raggiungere i 900 hp e velocità su albero motore 5,000 rpm. Naturalmente, l'adattamento di tale motore implica una riprogettazione del riduttore, affinché si ottenga in uscita una velocità di 1185 rpm. Infatti, la rotazione dell'elica non dovrebbe mai superare i 2700-2800 giri al minuto, in quanto ad una velocità di rotazione superiore, le pale dell'elica raggiungerebbero una velocità prossima a quella del suono, creando rumori insopportabili e fastidiose vibrazioni, nonché la perdita dell'efficacia dell'elica stessa. La mia tesi nasce dal lavoro precedentemente sviluppato da un mio collega, il quale aveva elaborato un riduttore in grado di modificare la potenza in entrata da 600 a 900 hp, riprogettando le ruote dentate e selezionando nuovi cuscinetti, pur mantenendo i carter iniziali, opportunamente modificati. Il mio obiettivo è quello di elaborare ulteriormente il compito da lui svolto, sviluppando un nuovo riduttore in grado di utilizzare sempre la potenza in entrata di un motore da 900 hp ma di rendere il riduttore nel suo insieme, più compatto e leggero possibile.
Resumo:
Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).
Resumo:
Purpose: Mismatches between pump output and venous return in a continuous-flow ventricular assist device may elicit episodes of ventricular suction. This research describes a series of in vitro experiments to characterize the operating conditions under which the EVAHEART centrifugal blood pump (Sun Medical Technology Research Corp., Nagano, Japan) can be operated with minimal concern regarding left ventricular (LV) suction. Methods: The pump was interposed into a pneumatically driven pulsatile mock circulatory system (MCS) in the ventricular apex to aorta configuration. Under varying conditions of preload, afterload, and systolic pressure, the speed of the pump was increased step-wise until suction was observed. Identification of suction was based on pump inlet pressure. Results: In the case of reduced LV systolic pressure, reduced preload (=10 mmHg), and afterload (=60 mmHg), suction was observed for speeds =2,200 rpm. However, suction did not occur at any speed (up to a maximum speed of 2,400 rpm) when preload was kept within 10-14 mmHg and afterload =80 mmHg. Although in vitro experiments cannot replace in vivo models, the results indicated that ventricular suction can be avoided if sufficient preload and afterload are maintained. Conclusion: Conditions of hypovolemia and/or hypotension may increase the risk of suction at the highest speeds, irrespective of the native ventricular systolic pressure. However, in vitro guidelines are not directly transferrable to the clinical situation; therefore, patient-specific evaluation is recommended, which can be aided by ultrasonography at various points in the course of support.
Resumo:
A diesel oxidation catalyst (DOC) with a catalyzed diesel particulate filter (CPF) is an effective exhaust aftertreatment device that reduces particulate emissions from diesel engines, and properly designed DOC-CPF systems provide passive regeneration of the filter by the oxidation of PM via thermal and NO2/temperature-assisted means under various vehicle duty cycles. However, controlling the backpressure on engines caused by the addition of the CPF to the exhaust system requires a good understanding of the filtration and oxidation processes taking place inside the filter as the deposition and oxidation of solid particulate matter (PM) change as functions of loading time. In order to understand the solid PM loading characteristics in the CPF, an experimental and modeling study was conducted using emissions data measured from the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR system and a DOC-CPF system (or a CCRT® - Catalyzed Continuously Regenerating Trap®, as named by Johnson Matthey) in the exhaust system. A series of experiments were conducted to evaluate the performance of the DOC-only, CPF-only and DOC-CPF configurations at two engine speeds (2200 and 1650 rpm) and various loads on the engine ranging from 5 to 100% of maximum torque at both speeds. Pressure drop across the DOC and CPF, mass deposited in the CPF at the end of loading, upstream and downstream gaseous and particulate emissions, and particle size distributions were measured at different times during the experiments to characterize the pressure drop and filtration efficiency of the DOCCPF system as functions of loading time. Pressure drop characteristics measured experimentally across the DOC-CPF system showed a distinct deep-bed filtration region characterized by a non-linear pressure drop rise, followed by a transition region, and then by a cake-filtration region with steadily increasing pressure drop with loading time at engine load cases with CPF inlet temperatures less than 325 °C. At the engine load cases with CPF inlet temperatures greater than 360 °C, the deep-bed filtration region had a steep rise in pressure drop followed by a decrease in pressure drop (due to wall PM oxidation) in the cake filtration region. Filtration efficiencies observed during PM cake filtration were greater than 90% in all engine load cases. Two computer models, i.e., the MTU 1-D DOC model and the MTU 1-D 2-layer CPF model were developed and/or improved from existing models as part of this research and calibrated using the data obtained from these experiments. The 1-D DOC model employs a three-way catalytic reaction scheme for CO, HC and NO oxidation, and is used to predict CO, HC, NO and NO2 concentrations downstream of the DOC. Calibration results from the 1-D DOC model to experimental data at 2200 and 1650 rpm are presented. The 1-D 2-layer CPF model uses a ‘2-filters in series approach’ for filtration, PM deposition and oxidation in the PM cake and substrate wall via thermal (O2) and NO2/temperature-assisted mechanisms, and production of NO2 as the exhaust gas mixture passes through the CPF catalyst washcoat. Calibration results from the 1-D 2-layer CPF model to experimental data at 2200 rpm are presented. Comparisons of filtration and oxidation behavior of the CPF at sample load-cases in both configurations are also presented. The input parameters and selected results are also compared with a similar research work with an earlier version of the CCRT®, to compare and explain differences in the fundamental behavior of the CCRT® used in these two research studies. An analysis of the results from the calibrated CPF model suggests that pressure drop across the CPF depends mainly on PM loading and oxidation in the substrate wall, and also that the substrate wall initiates PM filtration and helps in forming a PM cake layer on the wall. After formation of the PM cake layer of about 1-2 µm on the wall, the PM cake becomes the primary filter and performs 98-99% of PM filtration. In all load cases, most of PM mass deposited was in the PM cake layer, and PM oxidation in the PM cake layer accounted for 95-99% of total PM mass oxidized during loading. Overall PM oxidation efficiency of the DOC-CPF device increased with increasing CPF inlet temperatures and NO2 flow rates, and was higher in the CCRT® configuration compared to the CPF-only configuration due to higher CPF inlet NO2 concentrations. Filtration efficiencies greater than 90% were observed within 90-100 minutes of loading time (starting with a clean filter) in all load cases, due to the fact that the PM cake on the substrate wall forms a very efficient filter. A good strategy for maintaining high filtration efficiency and low pressure drop of the device while performing active regeneration would be to clean the PM cake filter partially (i.e., by retaining a cake layer of 1-2 µm thickness on the substrate wall) and to completely oxidize the PM deposited in the substrate wall. The data presented support this strategy.
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.
Resumo:
In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.