973 resultados para REGULATOR
SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae
Resumo:
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1. cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1. sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Resumo:
Two-component systems (TCSs), which contain paired sensor kinase and response regulator proteins, form the primary apparatus for sensing and responding to environmental cues in bacteria. TCSs are thought to be highly specific, displaying minimal cross-talk, primarily due to the co-evolution of the participating proteins. To assess the level of cross-talk between the TCSs of Mycobacterium tuberculosis, we mapped the complete interactome of the M. tuberculosis TCSs using phosphotransfer profiling. Surprisingly, we found extensive crosstalk among the M. tuberculosis TCSs, significantly more than that in the TCSs in Escherichia coli or Caulobacter crescentus, thereby offering an alternate to specificity paradigm in TCS signalling. Nearly half of the interactions we detected were significant novel cross-interactions, unravelling a potentially complex signalling landscape. We classified the TCSs into specific `one-to-one' and promiscuous `one-to-many' and `many-to-one' circuits. Using mathematical modelling, we deduced that the promiscuous signalling observed can explain several currently confounding observations about M. tuberculosis TCSs. Our findings suggest an alternative paradigm of bacterial signalling with significant cross-talk between TCSs yielding potentially complex signalling landscapes.
Resumo:
HuR is a ubiquitous, RNA binding protein that influences the stability and translation of several cellular mRNAs. Here, we report a novel role for HuR, as a regulator of proteins assembling at the 3' untranslated region (UTR) of viral RNA in the context of hepatitis C virus (HCV) infection. HuR relocalizes from the nucleus to the cytoplasm upon HCV infection, interacts with the viral polymerase (NS5B), and gets redistributed into compartments of viral RNA synthesis. Depletion in HuR levels leads to a significant reduction in viral RNA synthesis. We further demonstrate that the interaction of HuR with the 3' UTR of the viral RNA affects the interaction of two host proteins, La and polypyrimidine tract binding protein (PTB), at this site. HuR interacts with La and facilitates La binding to the 3' UTR, enhancing La-mediated circularization of the HCV genome and thus viral replication. In addition, it competes with PTB for association with the 3' UTR, which might stimulate viral replication. Results suggest that HuR influences the formation of a cellular/viral ribonucleoprotein complex, which is important for efficient initiation of viral RNA replication. Our study unravels a novel strategy of regulation of HCV replication through an interplay of host and viral proteins, orchestrated by HuR. IMPORTANCE Hepatitis C virus (HCV) is highly dependent on various host factors for efficient replication of the viral RNA. Here, we have shown how a host factor (HuR) migrates from the nucleus to the cytoplasm and gets recruited in the protein complex assembling at the 3' untranslated region (UTR) of HCV RNA. At the 3' UTR, it facilitates circularization of the viral genome through interaction with another host factor, La, which is critical for replication. Also, it competes with the host protein PTB, which is a negative regulator of viral replication. Results demonstrate a unique strategy of regulation of HCV replication by a host protein through alteration of its subcellular localization and interacting partners. The study has advanced our knowledge of the molecular mechanism of HCV replication and unraveled the complex interplay between the host factors and viral RNA that could be targeted for therapeutic interventions.
Resumo:
Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely - trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.
Resumo:
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Resumo:
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Resumo:
BipA is a novel member of the ribosome binding GTPase superfamily and is widely distributed in bacteria and plants. We report here that it regulates -multiple cell surface- and virulence-associated -components in the enteropathogenic Escherichia coli (EPEC) strain E2348/69. The regulated components include bacterial flagella, the espC pathogenicity island and a type III secretion system specified by the locus of enterocyte effacement (LEE). BipA positively regulated the espC and LEE gene clusters through transcriptional control of the LEE-encoded regulator, Ler. Additionally, it affected the pattern of proteolysis of intimin, a key LEE-encoded adhesin specified by the LEE. BipA control of the LEE operated independently of the previously characterized regulators Per, integration host factor and H-NS. In contrast, it negatively regulated the flagella-mediated motility of EPEC and in a Ler-independent manner. Our results indicate that the BipA GTPase functions high up in diverse regulatory cascades to co-ordinate the expression of key pathogenicity islands and other virulence-associated factors in E. coli.
Resumo:
We report the functional characterization of BipA, a GTPase that undergoes tyrosine phosphorylation in an enteropathogenic Escherichia coli (EPEC) strain. BipA mutants adhere to cultured epithelial cells but fail to trigger the characteristic cytoskeletal rearrangements found in cells infected with wild-type EPEC. In contrast, increased expression of BipA enhances actin remodelling and results in the hyperformation of pseudopods. BipA appears to be the first example of a new class of virulence regulator, as it also controls flagella-mediated cell motility and resistance to the antibacterial effects of a human host defence protein. Its striking sequence similarity to ribosome-binding elongation factors suggests that it uses a novel mechanism to modulate gene expression.
Resumo:
The aim of this paper is to explain under which circumstances using TACs as instrument to manage a fishery along with fishing periods may be interesting from a regulatory point of view. In order to do this, the deterministic analysis of Homans and Wilen (1997)and Anderson (2000) is extended to a stochastic scenario where the resource cannot be measured accurately. The resulting endogenous stochastic model is numerically solved for finding the optimal control rules in the Iberian sardine stock. Three relevant conclusions can be highligted from simulations. First, the higher the uncertainty about the state of the stock is, the lower the probability of closing the fishery is. Second, the use of TACs as management instrument in fisheries already regulated with fishing periods leads to: i) An increase of the optimal season length and harvests, especially for medium and high number of licences, ii) An improvement of the biological and economic variables when the size of the fleet is large; and iii) Eliminate the extinction risk for the resource. And third, the regulator would rather select the number of licences and do not restrict the season length.
Resumo:
This paper analyzes the consequences of the interaction between two different levels of government (regulators) in the development of housing policy when their decisions determine the level of competition in the housing market. The analysis discusses the implications derived from a lack of coordination between a local regulator who controls the supply of land for housing development and a central regulator who decides on housing subsidies. The results suggest that lack of coordination has significant effects on prices and supply of houses, housing developers’ profits, and buyers’ surplus.
Resumo:
In this paper it is shown that an ad valorem housing subsidy set by a central regulator (or a raise in the ad valorem housing subsidy rate) may reduce the number of houses built in the market and increase the price paid by the buyers of houses. The analysis considers a situation where there is imperfect competition in the housing market and a local regulator that decides on density, or on the number of sites for housing development, and that cares about a combination of the profits of housing developers and the surplus of buyers of houses.
Resumo:
The potential of mefluidide (N-(2,4-dimethyl-5[[trifluromethyl) sulfonyl] amino] phenol) acetamide) to act as a submersed aquatic plant growth regulator was evaluated using a laboratory bioassay system. Main stem elongation of hydrilla (Hydrilla verticillata (L.f.) Royle) and Eurasian watermilfoil (Myriophyllum spicatum L.) was effectively reduced by mefluidide at low concentrations. The lowest effective concentration of mefluidide that reduced stem length in Eurasian watermilfoil (100 yg a.i./L) was 5 times lower than that for hydrilla (500 yg a.i./L). Short-term net photosynthetic rates of these plants were not affected by mefluidide at concentrations as high as 1000 yg a.i./L. The minimum exposure time required to maintain an inhibitory effect for at least 28 days at a concentration of 500 yg ai.i./L was 3 to 7 days for Eurasian watermilfoil and 7 to 14 days for hydrilla. The results suggest that mefluidide is a more effective growth regulator for Eurasian watermilfoil than hydrilla. Exogenously applied gibberellic acid (GA) did not completely overcome the inhibitory effect of mefluidide even when GA was added at a high concentration (10-5 M). In addition, the internodal lengths of stems treated with mefluidide were not reduced as they were when treated with gibberellin synthesis inhibitors. The reduction of main stem elongation by mefluidide appeared to be due to the inhibition of new cell and tissue development at the stem tip rather than from inhibition of GA biosynthesis.
Resumo:
This study was designed to comprehensively analyze the differential expression of proteins from human umbilical vein endothelial cells (HUVECs) exposed to tumor conditioned medium (TCM) and to identify the key regulator in the cell cycle progression. The HUVECs were exposed to TCM from breast carcinoma cell line MDA-MB-231, then their cell cycle distribution was measured by flow cytometer (FCM). The role of protein in cell cycle progression was detected via two-dimensional polyacrylamide gel electrophoresis (2-DE) and western blotting. Following the stimulation of TCM, HUVECs showed a more cells in the S phase than did the negative control group (ECGF-free medium with 20% FBS), but the HUVECs' level was similar to the positive control group (medium with 25 mug/ml ECGF and 20% FBS). Increased expression of cyclin D-1/E and some changes in other related proteins occurred after incubation with TCM. From our results, we can conclude that breast carcinoma cell line MDA-MB-231 may secrete soluble pro-angiogenic factors that induce the HUVEC angiogenic switch, during which the expression of cell cycle regulator cyclin D-1/E increases and related proteins play an important role in this process.
Resumo:
11 p.
Resumo:
[EN] Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high-affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3). Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus (LC) neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 LC neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in LC and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.