964 resultados para Pulse Width Modulation
Resumo:
We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) (alpha, beta/delta and gamma) are lipid sensors capable of adapting gene expression to integrate various lipid signals. As such, PPARs are also very important pharmaceutical targets, and specific synthetic ligands exist for the different isotypes and are either currently used or hold promises in the treatment of major metabolic disorders. In particular, compounds of the class of the thiazolinediones (TZDs) are PPARgamma agonists and potent insulin-sensitizers. The specific but still broad expression patterns of PPARgamma, as well as its implication in numerous pathways, constitutes also a disadvantage regarding drug administration, since this potentially increases the chance to generate side-effects through the activation of the receptor in tissues or cells not affected by the disease. Actually, numerous side effects associated with the administration of TZDs have been reported. Today, a new generation of PPARgamma modulators is being actively developed to activate the receptor more specifically, in a cell and time-dependent manner, in order to induce a specific subset of target genes only and modulate a restricted number of metabolic pathways. We will discuss here why and how the development of such selective PPARgamma modulators is possible, and summarize the results obtained with the published molecules.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
A Comment on the Letter by Mark Mineev-Weinstein, Phys. Rev. Lett. 80, 2113 (1998). The authors of the Letter offer a Reply.
Resumo:
One-dimensional arrays of nonlinear electronic circuits are shown to support propagation of pulses when operating in a locally bistable regime, provided the circuits are under the influence of a global noise. These external random fluctuations are applied to the parameter that controls the transition between bistable and monostable dynamics in the individual circuits. As a result, propagating fronts become destabilized in the presence of noise, and the system self-organizes to allow the transmission of pulses. The phenomenon is also observed in weakly coupled arrays, when propagation failure arises in the absence of noise.
Resumo:
An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.
Resumo:
The photoproduction of η′η′-mesons off different nuclei has been measured with the CBELSA/TAPS detector system for incident photon energies between 15002200 MeV. The transparency ratio has been deduced and compared to theoretical calculations describing the propagation of η′η′-mesons in nuclei. The comparison indicates a width of the η′η′-meson of the order of Γ=1525 MeVΓ=1525 MeV at ρ=ρ0ρ=ρ0 for an average momentum pη′=1050 MeV/cpη′=1050 MeV/c, at which the η′η′-meson is produced in the nuclear rest frame. The inelastic η′Nη′N cross section is estimated to be 310 mb. Parameterizing the photoproduction cross section of η′η′-mesons by σ(A)=σ0Aασ(A)=σ0Aα, a value of α=0.84±0.03α=0.84±0.03 has been deduced.
Resumo:
The action of individual type II DNA topoisomerases has been followed in real time by observing the elastic response of single DNA molecules to sequential strand passage events. Micromanipulation methods provide a complementary approach to biochemical studies for investigating the mechanism of DNA topoisomerases.