994 resultados para Pulp washer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brewer`s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 N NaOH solution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes. However, soda pulping of acid pretreated BSG gave a cellulose-rich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and < 3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, several research groups and industries are studying applications for the residues from agrobusiness, other than burning them. Thinking about a better use for the sugarcane bagasse, this study aims to obtain membranes of cellulose acetate composite with oxidized lignin, both isolated from sugarcane bagasse. Thus, we obtain a product with higher commercial value, from a natural fiber, which has applications in water and effluent treatment, and further contributes to the maintenance of the environment. Macromolecular components of bagasse were separated by steam explosion pre-treatment and a basic treatment with NaOH. The pulp obtained was bleached and acetylated, and subsequently membranes of this cellulose acetate were synthesized, incorporating oxidized lignin to these membranes in order to increase the metal retention capacity of them. The acetylated material was analyzed by IR, confirming acetylation. Degree of substitution was determined by volumetry, resulting in a diacetate to the MA I condition and a triacetate to MA II condition. It was observed that for the material with a lower degree of acetylation, it has better incorporation of oxidized lignins. SEM, showed membranes with dense structure. Tests were conducted to evaluate metal retention, and the average capacity of removal was 16% Cu(+2) in steady-state experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this work was to produce fruit wines from pulp of gabiroba, cacao, umbu, cupuassu and jaboticaba and characterize them using gas chromatography-mass spectrometry for determination of minor compounds and gas chromatography-flame ionization detection for major compounds. Ninety-nine compounds (C(6) compounds, alcohols, monoterpenic alcohols, monoterpenic oxides, ethyl esters, acetates, volatile phenols, acids, carbonyl compounds, sulfur compounds and sugars) were identified in fruit wines. The typical composition for each fruit wine was evidenced by principal component analysis and Tukey test. The yeast UFLA CA 1162 was efficient in the fermentation of the fruit pulp used in this work. The identification and quantification of the compounds allowed a good characterization of the fruit wines. With our results, we conclude that the use of tropical fruits in the production of fruit wines is a viable alternative that allows the use of harvest surpluses and other underused fruits, resulting in the introduction of new products into the market. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the potential for fermentation of raspberry pulp, sixteen yeast strains (S. cerevisiae and S. bayanus) were studied. Volatile compounds were determined by GC-MS, GC-FID, and GC-PFPD. Ethanol. glycerol and organic acids were determined by HPLC. HPLC-DAD was used to analyse phenolic acids. Sensory analysis was performed by trained panellists. After a screening step, CAT-1, UFLA FW 15 and S. bayanus CBS 1505 were previously selected based on their fermentative characteristics and profile of the metabolites identified. The beverage produced with CAT-1 showed the highest volatile fatty acid concentration (1542.6 mu g/L), whereas the beverage produced with UFLA FIN 15 showed the highest concentration of acetates (2211.1 mu g/L) and total volatile compounds (5835 mu g/L). For volatile sulphur compounds. 566.5 mu g/L were found in the beverage produced with S. bayanus CBS 1505. The lowest concentration of volatile sulphur compounds (151.9 mu g/L) was found for the beverage produced with UFLA FW 15. In the sensory analysis, the beverage produced with UFLA FW 15 was characterised by the descriptors raspberry, cherry, sweet, strawberry, floral and violet. In conclusion, strain UFLA FW 15 was the yeast that produced a raspberry wine with a good chemical and sensory quality. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, it was evaluated how two different culture conditions for the biotreatment of Eucalyptus grandis by Ceriporiopsis subvermispora affect a subsequent high-yield kraft pulping process. Under the varied culture conditions investigated, different extracellular enzyme activities were observed. Manganese-peroxidase (MnP) secretion was 3.7 times higher in cultures supplemented with glucose plus corn-steep liquor (glucose/CSL) as compared to non-supplemented (NS) cultures. The biotreated samples underwent diverse levels of wood component degradation as losses of weight and lignin were increased in glucose/CSL cultures. Mass balances for lignin removal during kraft pulping showed that delignification was facilitated when both biotreated wood samples were cooked. Delignification efficiency did not correlate positively with MnP levels in the cultures. On the other hand, biopulps from NS and glucose/CSL cultures saved 27% and 38% beating time to achieve 288 Schopper-Riegler freeness during refining, respectively. Biopulps disposed of decreased tensile and tear resistances, thus easier refining of the biokraft pulps seems to be a consequence of less resistant fiber walls. Improved beatability of biopulps was tentatively related to short fibers and fines formation during refining. We suggest that to some extent polysaccharide depolymerization occurred during the biotreatment, which also resulted in diminished pulp yields in the case of glucose/CSL cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopulping of Eucalyptus grandis wood chips with Phanerochaete chrysosporium RP-78 was evaluated under non-aseptic conditions in laboratory and mill wood-yard. The ability of P. chrysosporium to compete with indigenous fungi present in fresh wood chips was notorious under controlled laboratory experiments. A subsequent step involved an industrial test performed with 10-ton of fresh wood chips inoculated and maintained at 37 +/- 38 degrees C for 39 days in a biopulping pilot plant. Biotreated wood chips were pulped in a chemithermomechanical pulping mill. Net energy consumption during refining was 745 kWh ton(-1) and 610 kWh ton(-1) of processed pulp for control and biotreated wood chips, respectively. Accordingly, 18.5% net energy saving could be achieved. Biopulps contained lower shive content and had improved strength properties compared to control pulps. Tensile index improved from 25 +/- 1 N m g(-1) to 33.6 +/- 0.5 N m g(-1) and delamination strength from 217 +/- 19 kPa to 295 +/- 30 kPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction To determine and compare thresholds of cutaneous sensitivity of lower extremities in diabetic patients with an ulcer on only one lower extremity Methods and Materials The study group included 20 patients with mean age of 61 6 and average time with diabetes of 12 4 years All patients were previously tested using Semmes-Weinstein monofilament 5 07 Sensitivity was evaluated using the two point discrimination test and the PSSD (TM) (Pressure-Specified Sensory Device) in order to assess touch thresholds in a quantitative manner, in g/mm(2) Three skin areas were tested hallux pulp, dorsum of foot and medial heel, including four tests 1 point static, 1 point moving, 2 points static and 2 points moving Results Mean 2 point discrimination distance in mm was higher in feet with ulcers, but the difference between extremities was only statistically significant for the hallux. With the PSSD (TM), all patients had higher pressure thresholds in feet with ulcers when compared with feet without ulcers, in all tests, with statistical significance Conclusion The PSSD (TM) was able to differentiate levels of sensation between extremities with and without ulcers in diabetic patients, with statistical significance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present research was to evaluate the effect of fibre morphology (e.g., length, width, fibrillation, broken ends, content of fines and number of fibres per gram) on flocculation and drainage properties of fibre-cement suspensions and on physical properties of the fibre-cement composites. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that the mechanical refining increased the size of the formed flocs and decreased the concentration of free small particles (with dimensions between 1 and 20 pm) as a consequence of the increased fibrillation and content of fines, which increased the capacity of the fibres to capture the mineral particles. High levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. This is due to the higher number of fibres per gram in Eucalyptus pulp than in Pinus pulp. Pulp refining improved the packing of the particles and, although decreased the drainage rate. it contributed to a less porous structure, which improved the microstructure of the composite. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effluents from pulp mill are usually toxic and mutagenic. This characteristic is mainly a consequence of xenobiotic compounds that are formed during the process. Global parameters such as chemical oxidation demand, total organic carbon and others, do not permit identify whether the toxic potential was remedied by the treatments or not. The objective of this research was to evaluate the performance of an horizontal-flow anaerobic immobilized biomass reactor (HAIB) treating the bleaching effluent from a Kraft pulp mill using toxicological (Daphnia similis - Ceriodaphnia sdvestrii) mutagenicity and citotoxicological assays (Allium cepa L). The results showed high sensibility of the test-organisms and capability of the anaerobic reactor to remove compounds that are exerting toxic and mutagenic effects. The bioassays represented an attractive alternative to water quality analyzes and the performance evaluation of treatments.