927 resultados para Programmed Death Phenomena
Resumo:
Une arythmie foetale complique 1 à 2% des grossesses et présente dans 10% des cas un risque majeur de morbidité et de mortalité pour le foetus. Les arythmies les plus fréquentes sont les extrasystoles supraventriculaires (ESSV). Elles sont bénignes et se résolvent spontanément mais nécessitent un suivi visant à exclure un passage en tachycardie supraventriculaire (TSV). Les TSV sont plus rares mais sont fréquemment compliquées de décompensation cardiaque et d'anasarque. Heureusement, elles sont traitables in utero par pharmacothérapie. Nous rapportons ici notre expérience entre 2003 et 2005 avec de telles pathologies : parmi les 26 foetus adressés au Centre de cardiologie du CHUV, à Lausanne, et présentant des ESSV et/ou une TSV, aucun n'a souffert de complication sérieuse. Six ont bénéficié d'un traitement par sotalol en raison de TSV. Fetal arrhythmias form a complicating factor in 1-2% of all pregnancies and in 10% of those cases morbidity or even mortality is encountered. The most frequent occurring arrhythmias are premature atrial contractions (PAC). These are usually benign phenomena which resolve spontaneously, but require some follow-up to exclude the development of supraventricular tachycardias (SVT). SVTs are rare but are frequently complicated by fetal congestive heart failure or even fetal death. Timely prenatal pharmacotherapeutic intervention is generally advised to return to an adequate heart rate, preferably sinus rhythm. This study reports on the local experience with these forms of pathologies: of the 26 fetuses encountered with PAC or/and SVT between 2003 and 2005, none experienced serious complications, while 6 required pharmacotherapeutic intervention with sotalol.
Resumo:
PURPOSE: To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. MATERIALS AND METHODS: Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. RESULTS: Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. CONCLUSION: During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.
Resumo:
Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
In this report, the authors present two cases of accidental death in children of addicted parents. In the first case, the child was left unattended at home while the mother went out to buy cocaine. She was arrested and detained with no mention of the unsupervised child. The cause of death in this case was determined to be starvation and dehydration. In the second case, a child mistakenly received a methadone suppository by her father instead of an antipyretic suppository. Toxicological analysis of the femoral blood revealed methadone at a concentration of 1.2 mg/L. The cause of death was determined to be methadone intoxication. The literature is reviewed and discussed. We report these cases to illustrate the risk of harm to children from illicit drugs and prescription medications at home and because there is no mention of accidental death in children following a methadone suppository administration in the current literature.
Resumo:
We report here the case of a 55 year old female that underwent surgery for a well differentiated squamous cell carcinoma of the esophagus (middle third). Four months after surgery, she complains of neck pain, for which she is prescribed non steroidal antiinflammatory drugs (NSAID). A CT-scan and a Barium swallow are then normal. After three weeks of treatment, the patient is admitted on emergency to the Intensive Care Unit for a resuscitation hematemesis and atrial fibrillation with a fast ventricular response. The symptoms are stabilized after the transfusion of a few packed red blood cells. A few hours later, however, a massive hematemesis recurs and the patient dies despite intense resuscitation measures. Autopsy reveals three gastric ulcers, one of which had perforated through the cardiac left ventricular wall
Resumo:
Lymphocyte homeostasis is a balance between lymphocyte proliferation and lymphocyte death. Tight control of apoptosis is essential for immune function, because its altered regulation can result in cancer and autoimmunity. Signals from members of the tumour-necrosis-factor receptor (TNF-R) family, such as Fas and TNF-R1, activate the caspase cascade and result in lymphocyte death by apoptosis. Anti-apoptotic proteins, such as FLIP (also known as FLICE/caspase-8 inhibitory protein) have recently been identified. FLIP expression is tightly regulated in T cells and might be involved in the control of both T-cell activation and death. Abnormal expression of FLIP might have a role not only in autoimmune diseases, but also in tumour development and cardiovascular disorders.
Resumo:
Two hybrid compounds comprising an antimetastatic ruthenium-arene fragment tethered to an indazole-3-carboxylic acid derivative that inhibits aerobic glycolysis in cancer cells have been prepared and evaluated in a variety of cancer cell lines, including highly relevant human glioblastoma cells, with an apparent synergistic action between the two components observed.
Resumo:
Interactions between major histocompatibility complex (MHC) molecules expressed on stromal cells and antigen-specific receptors on T cells shape the repertoire of mature T lymphocytes emerging from the thymus. Some thymocytes with appropriate receptors are stimulated to undergo differentiation to the fully mature state (positive selection), whereas others with strongly autoreactive receptors are triggered to undergo programmed cell death before completing this differentiation process (negative selection). The quantitative impact of negative selection on the potentially available repertoire is currently unknown. To address this issue, we have constructed radiation bone marrow chimeras in which MHC molecules are present on radioresistant thymic epithelial cells (to allow positive selection) but absent from radiosensitive hematopoietic elements responsible for negative selection. In such chimeras, the number of mature thymocytes was increased by twofold as compared with appropriate control chimeras This increase in steady-state numbers of mature thymocytes was not related to proliferation, increased retention, or recirculation and was accompanied by a similar two- to threefold increase in the de novo rate of generation of mature cells. Taken together, our data indicate that half to two-thirds of the thymocytes able to undergo positive selection die before full maturation due to negative selection.
Resumo:
La mort subite d'origine cardiaque chez les sportifs : les Recommandations de Lausanne Résumé Objectifs : Cette étude collecte les données de la littérature scientifique concernant la mort subite d'origine cardiaque chez les sportifs et a pour but d'aboutir à un protocole d'investigation de préparticipation globalement acceptable, approuvé par la conférence de consensus du Comité International Olympique(CIO), et recommandé par ce dernier. Données cliniques : La mort subite chez les athlètes de moins de 35 ans, engagés dans des sports de compétition,. est un évènement bien connu, dont l'incidence est plus élevée (~2/100000/an) que chez les non-athlètes (2,5 :1). La cause est cardiovasculaire dans plus de 90% des cas. Méthodes : Une revue systématique de la littérature a mis en évidence les causes de mort subite d'origine cardiaque, le sexe, l'âge, les maladies cardiaques sous-jacentes et le type de sport, ainsi que les protocoles d'investigation de préparticipation utilisés. Les méthodes nécessaires pour détecter des anomalies cardiaques préexistantes sont discutées pour formuler un protocole d'investigation de préparticipation pour la commission médicale du CIO. (http://www.olympic.org/uk/organisation/commissions/medical/full_ story_ uk.asp?id=1182) Résultats: 1101 cas de mort subite d'origine cardiaque ont été rapportés (1966-2004) chez des athlètes de moins de 35 ans, 50% présentant des anomalies cardiaques congénitales et des cardiomyopathies et 10% une athérosclérose à début précoce. 40% des athlètes avaient moins de 18 ans, 33% moins de 16 ans ; le rapport femme/homme était de 1/9. La mort subite d'origine cardiaque était reportée dans presque tous les sports ; ceux impliqués le plus fréquemment étaient le football(30%), le basketball(25%), et la course à pied(15%). Les tests de préparticipation étaient de qualité et de contenu variables. La conférence de consensus du CIO a accepté les «Recommandations de Lausanne » proposées, basées sur cette recherche et des opinions d'experts. (http://multimedia.olympic.org/pdf/en_report_886.pdf) Conclusions : La mort subite d'origine cardiaque touche plus souvent qu'attendu les jeunes athlètes et est principalement due à des anomalies cardiaques congénitales préexistantes. Les atteintes athérosclérotiques précoces forment une autre cause importante de décès chez les jeunes adultes. L'acceptation par le CIO de «Recommandations de Lausanne » a permis d'aboutir à un protocole d'investigation de préparticipation globalement acceptable .
Resumo:
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes an antiapoptotic viral Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (vFLIP/K13). The antiapoptotic activity of vFLIP/K13 has been attributed to an inhibition of caspase 8 activation and more recently to its capability to induce the expression of antiapoptotic proteins via activation of NF-kappaB. Our study provides the first proteome-wide analysis of the effect of vFLIP/K13 on cellular-protein expression. Using comparative proteome analysis, we identified manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant and an important antiapoptotic enzyme, as the protein most strongly upregulated by vFLIP/K13 in endothelial cells. MnSOD expression was also upregulated in endothelial cells upon infection with HHV-8. Microarray analysis confirmed that MnSOD is also upregulated at the RNA level, though the differential expression at the RNA level was much lower (5.6-fold) than at the protein level (25.1-fold). The induction of MnSOD expression was dependent on vFLIP/K13-mediated activation of NF-kappaB, occurred in a cell-intrinsic manner, and was correlated with decreased intracellular superoxide accumulation and increased resistance of endothelial cells to superoxide-induced death. The upregulation of MnSOD expression by vFLIP/K13 may support the survival of HHV-8-infected cells in the inflammatory microenvironment in KS.