903 resultados para Poly(Lactic-co-Glycolic Acid)
Resumo:
The thesis investigates two different in vitro aspects of Chlamydia trachomatis (CT). The thesis analyzes the effect of different sugars on CT infectivity. which is investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose or mannitol. Sugars effect on EB membrane fluidity is investigated by fluorescence anisotropy measurement, whereas changes in lipopolysaccharide exposure are examined by cytofluorimetric analysis. By Western blot experiments, the phosphorylation state of Focal Adhesion Kinase in cells infected with EBs pre-incubated with sugars it’s explored. Sugar significantly increase infectivity, acting on the EB structure. Sugars induce an increase of EB membrane fluidity, leading to changes in LPS exposure. After incubation with sucrose and mannitol, EBs lead to higher FAK phosphorylation, enhancing activation of anti-apoptotic and proliferative signals in the host. Secondly, the thesis explores the protective effect of different Lactobacilli against CT infection: Lactobacillus crispatus and Lactobacillus reuteri. CT infectivity is evaluated after host cells were treated for 1 hour with diluted supernatant cell-free fraction or with the bacterial cells. Assessed that L.crispatus is more protective than L.reuteri, lactic acid production is evaluated by HPLC. Subsequently Lactate dehydrogenases activity is evaluated by resazurin assay and by LC-MS. Then, D-lactate dehydrogenase specific activity has been investigated by measuring NADH formation. Afterwards, addition of D or L-lactic acid to L.reuteri supernatant has been performed and their effect in promoting protection in the host cells assessed. Then a metabolic analysis has been carried out by real-time measurement of mitochondrial respiration after treatment. Finally, histone acetylation and lactylation, and gene and protein expression of relevant targets, have been investigated. It is shown that the D isomer is more efficient in conferring protection, causing a shift in the host cell metabolic profile and a pattern of histone modifications that changes the expression of important targets.
Resumo:
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.
Resumo:
It is investigated in the present contribution the oscillatory co-electrodeposition of CuSn on a polycrystalline gold surface in the presence of Triton X-100 surfactant and citric acid as additive, in acidic media. The experiments were conducted under potentiostatic control and the system dynamics characterized in terms of the morphology and stability of the current oscillations. Besides modulations in the frequency and amplitude of the current oscillations, several patterned states were observed, including relaxation-like and mixed mode oscillations. The oscillations were found to be very robust and some time series presented regular motions up to about two hours.
Resumo:
Polyethyleneglycol (PEG) was photooxidized in a photo-Fenton system and results compared with the dark reaction. The products were analysed using GPC and HPLC. In the absence of light, PEG samples needed 490 min to reduce their w by 50%, whereas under UV irradiation, only 10 min were necessary. The exponential decay of
w with a concomitant increase in polydispersity and number of average chain scission, characterized a random chain scission mechanism. The degradation products of PEG in both systems showed the presence of lower molecular weight products, including smaller ethyleneglycols and formic acid. The mechanism involves consecutive processes, were the larger ethyleneglycols give rise, successively, to smaller ones. This suggests that the mechanism involves successive scissions of the polymer chain. Irradiated samples decomposed faster than those kept in the dark This study proves that the foto-Fenton method associated with UV-light is a good reactant for PEG photodegradation.
Resumo:
The general mechanism for the photodegradation of polyethyleneglycol (PEG) by H2O2/UV was determined studying the photooxidation of small model molecules, like low molecular weight ethyleneglycols (tetra-, tri-, di-, and ethyleneglycol). After 30 min of irradiation the average molar mass (Mw) of the degradated PEG, analysed by GPC, fall to half of its initial value, with a concomitant increase in polydispersitivity and number of average chain scission (S), characterizing a random chain scission process yielding oligomers and smaller size ethyleneglycols. HPLC analysis of the photodegradation of the model ethyleneglycols proved that the oxidation mechanism involved consecutive reactions, where the larger ethyleneglycols gave rise, successively, to smaller ones. The photodegradation of ethyleneglycol lead to the formation of low molecular weight carboxylic acids, like glycolic, oxalic and formic acids.
Resumo:
Background: Several plasma membrane transporters have been shown to mediate the cellular influx and/or efflux of iodothyronines, including the sodium-independent organic anion co-transporting polypeptide 1 (OATP1), the sodium taurocholate co-transporting polypeptide (NTCP), the L-type amino acid transporter 1 (LAT1) and 2 (LAT2), and the monocarboxylate transporter 8 (MCT8). The aim of this study was to investigate if the mRNAs of these transporters were expressed and regulated by thyroid hormone (TH) in mouse calvaria-derived osteoblastic MC3T3-E1 cells and in the fetal and postnatal bones of mice. Methods: The mRNA expression of the iodothyronine transporters was investigated with real-time polymerase chain reaction analysis in euthyroid and hypothyroid fetuses and litters of mice and in MC3T3-E1 cells treated with increasing doses of triiodothyronine (T(3); 10(-10) to 10(-6) M) or with 10(-8) M T(3) for 1-9 days. Results: MCT8, LAT1, and LAT2 mRNAs were detected in fetal and postnatal femurs and in MC3T3-E1 cells, while OATP1 and NTCP mRNAs were not. LAT1 and LAT2 mRNAs were not affected by TH status in vivo or in vitro or by the stage of bone development or osteoblast maturation (analyzed by the expression of osteocalcin and alkaline phosphatase, which are key markers of osteoblastic differentiation). In contrast, the femoral mRNA expression of MCT8 decreased significantly during post-natal development, whereas MCT8 mRNA expression increased as MC3T3-E1 cells differentiated. We also showed that MCT8 mRNA was up-regulated in the femur of hypothyroid animals, and that it was down-regulated by treatment with T(3) in MC3T3-E1 cells. Conclusions: This is the first study to demonstrate the mRNA expression of LAT1, LAT2, and MCT8 in the bone tissue of mice and in osteoblast-like cells. In addition, the pattern of MCT8 expression observed in vivo and in vitro suggests that MCT8 may be important to modulate TH effects on osteoblast differentiation and on bone development and metabolism.
Resumo:
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a ""flipflop'' phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Resumo:
This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.
Resumo:
In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.
Resumo:
Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.
Resumo:
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Two series of poly(L,L-lactide-b-ethylene glycol-b-L,L-lactide) copolymers, PLA-PEO-PLA, were synthesized by polymerization Of L,L-lactide using a dihydroxy-terminated poly(ethylene glycol) (PEG) (M-n = 4000 or 600 g/mol) as coinitiator and stannous 2-ethylhexanoate, Sn(Oct)(2), as initiator. The synthesized copolymers have shown high stereoregularity as observed by C-13 NMR analyses. The nanoparticles were prepared by using a solvent diffusion method and the self-assemblage process and were characterized by NMR and SEM. It was possible to conclude that the self-assembled particles presented a core-shell structure characterized by a hydrophobic PLA core and a hydrophilic PEG shell, thus the NMR of the aqueous solutions indicated a quasi-solid behavior for the particles` interior. The diameters of the spherical particles as observed by SEM were in the 50-250 nm range, depending on the copolymer composition and the preparation procedure.
Resumo:
Activation of the cephalosporin side-chain precursor to the corresponding CoA-thioester is an essential step for its incorporation into the P-lactam backbone. To identify an acyl-CoA ligase involved in activation of adipate, we searched in the genome database of Penicillium chrysogenum for putative structural genes encoding acyl-CoA ligases. Chemostat-based transcriptome analysis was used to identify the one presenting the highest expression level when cells were grown in the presence of adipate. Deletion of the gene renamed aclA, led to a 32% decreased specific rate of adipate consumption and a threefold reduction of adipoyl-6-aminopenicillanic acid levels, but did not affect penicillin V production. After overexpression in Escherichia coli, the purified protein was shown to have a broad substrate range including adipate. Finally, protein-fusion with cyan-fluorescent protein showed co-localization with microbody-borne acyl-transferase. Identification and functional characterization of aclA may aid in developing future metabolic engineering strategies for improving the production of different cephalosporins. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A new approach to electrochromics, based on the reversible coating-dissolution of an oxide from an inorganic electrochromic electrolyte consisting of a silver-amine complex in a polymer electrolyte (PEO), has proven successful. The reversible electrodeposition of silver onto indium-tin oxide coated glass (ITO) was investigated and the influence of HClO(4) and KI was evaluated. Several characteristics of the electrolyte Ag-PEO make it suitable for use in electrochromic reversible silver electrodeposition devices, such as visible absorption spectrum with an absorbance variation of 60%, an electrochromic efficiency of 5.2 cm(2) C(-1) and an ionic conductivity 4.4 x 10(-4) S cm(-1). The addition of perchloric acid improved the transparency of Ag-PEO, and potassium iodide (KI) was fundamental in setting up the process of reversible silver electrodeposition in the PEO polymeric matrix. A description of the electrochemical processes implied is presented. A number of approaches focusing on the improvement of system performance are tested. (C) 2009 Elsevier Ltd. All rights reserved.