895 resultados para Poetics of the novel
Resumo:
During copulation, spermatophores produced by male coleoid cephalopods undergo the spermatophoric reaction, a complex process of evagination that culminates in the attachment of the spermatangium (everted spermatophore containing the sperm mass) on the female's body. To better understand this complicated phenomenon, the present study investigated the functional morphology of the spermatophore of the squid Doryteuthis plei applying in vitro analysis of the reaction, as well as light and electron microscopy investigation of spermatangia obtained either in vitro, or naturally attached on females. Hitherto unnoticed functional features of the loliginid spermatophore require a reappraisal of some important processes involved in the spermatophoric reaction. The most striking findings concern the attachment mechanism, which is not carried out solely by cement adhesive material, as previously believed, but rather by an autonomous, complex process performed by multiple structures during the spermatophoric reaction. During evagination, the ejaculatory apparatus provides anchorage on the targeted tissue, presumably due to the minute stellate particles present in the exposed spiral filament. Consequently, the ejaculatory apparatus maintains the attachment of the tip of the evaginating spermatophore until the cement body is extruded. Subsequently, the cement body passes through a complex structural rearrangement, which leads to the injection of both its viscid contents and pointed oral region onto the targeted tissue. The inner membrane at the oral region of the cement body contains numerous stellate particles attached at its inner side; eversion of this membrane exposes these sharp structures, which presumably adhere to the tissue and augment attachment. Several naturally attached spermatangia were found with their bases implanted at the deposition sites, and the possible mechanisms of perforation are discussed based on present evidence. The function of the complex squid spermatophore and its spermatophoric reaction is revisited in light of these findings. J. Morphol. 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA(3). The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA(3) or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA(3) application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.
Resumo:
The emergence of new infectious bronchitis virus (IBV) genotypes or serotypes along with the poor cross-protection observed among IBV serotypes have complicated the avian infectious bronchitis (IB) control programs in different geographic regions. In Cuba, the lack of genetic information regarding IBV and the increasing epidemiological importance of this virus in Cuban chicken flocks demand further characterization of IBV isolates. In the present work, studies of genetic diversity and phylogenetic relationships among recent IBV isolates from Cuban chicken flocks showing respiratory disorders were performed. Two putative genotypes genetically different to the Massachusetts genotype H120 strain used in the Cuban vaccination program were found in the flocks assessed. In addition, a potential nephropathogenic IBV isolate was found by first time in Cuba. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Photodynamic antimicrobial chemotherapy (PACT) is a promising alternative to conventional chemotherapy that can be used to treat localized mycosis. The development of PACT depends on identifying effective and selective PS for the different pathogenic species. The in vitro susceptibilities of Trichophyton mentagrophytes and Trichophyton rubrum microconidia to PACT with methylene blue (MB), toluidine blue o (TBO), new methylene blue N (NMBN), and the novel pentacyclic phenothiazinium photosensitizer S137 were investigated. The efficacy of each PS was determined based on its minimal inhibitory concentration (MIC). Additionally, we evaluated the effect of PACT with NMBN and S137 on the survival of the microconidia of both species. 5137 showed the lowest MIC. MIC for S137 was 2.5 mu M both for T. mentagrophytes and T. rubrum, when a light dose of 5J cm(-2) was used. PACT with NMBN (10 mu M and 20J cm(-2)) resulted in a reduction of 4 logs in the survival of the T. rubrum and no survivor of T. mentagrophytes was observed. PACT with S137 at 1 mu M and 20J cm(-2) resulted in a reduction of approximately 3 logs in the survival of both species. When a S137 concentration of 10 mu M was used, no survivor was observed for both species at all light doses (5, 10 and 20J cm(-2)). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: In the presence of turbinate dysfunction, an inferior turbinectomy for persistent hypertrophy of bone and/or mucosa may be performed. We sought to explore anatomic feasibility of a transoral turbinectomy. Methods: After transoral inferior turbinectomy in 12 cadavers, average distances from the external nasal valve to inferior turbinate and from pyriform aperture to inferior turbinate were compared. Average "area of access" was calculated. Preoperative and postoperative nasal length, tip projection, and alar-base width were also compared. Results: Average distance from external nasal valve to inferior turbinate was 32.4 mm. Average distance from aperture to inferior turbinate was 2.4 mm (P < 0.0001). Average "areas of access" to nasal vault through the external nasal valve and mouth were 183.9 mm(2) and 243.6 mm(2) (P = 0.07), respectively. Conclusions: The transoral approach provides a larger "area of access" to the turbinate, a statistically significant reduction of distance to target, no postoperative changes in nasal soft tissue, and easier instrumentation.
Resumo:
Background: Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e. g., the determination of the viral protein sequences for enlightenment of their evolutionary history. Methodology/Principal Findings: Biological (host range and symptomatology), serological, and molecular (S and M RNA sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they represent members of a new evolutionary lineage within the genus Tospovirus. Conclusion/Significances: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported), but throughout the world.
Resumo:
Madrepora is one of the most ecologically important genera of reef-building scleractinians in the deep sea, occurring from tropical to high-latitude regions. Despite this, the taxonomic affinities and relationships within the genus Madrepora remain unclear. To clarify these issues, we sequenced the mitochondrial (mt) genome of the most widespread Madrepora species, M. oculata, and compared this with data for other scleractinians. The architecture of the M. oculara mt genome was very similar to that of other scleractinians, except for a novel gene rearrangement affecting only cox2 and cox3. This pattern of gene organization was common to four geographically distinct M. oculata individuals as well as the congeneric species M. minutiseptum, but was not shared by other genera that are closely related on the basis of cox1 sequence analysis nor other oculinids, suggesting that it might be unique to Madrepora. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABAA receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions. Findings Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain. Conclusions Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.
Resumo:
Abstract Background The CHD7 (Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the CHD7 gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. CHD7 is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to CHD7 to date indicating that alternative splicing associated to this gene is poorly characterized. Findings Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human CHD7 (named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated. Conclusions Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the CHD7 gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.
Resumo:
Abstract Background The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. Case presentation We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917–855 kb and 601–585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932–789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601–585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517–595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. Conclusions These two novel translocations illustrate the clinical variability in carriers of balanced translocations with breakpoints near SOX9. The translocation t(17;20) breakpoint provides further evidence for an additional testis-specific SOX9 enhancer 517 to 595 kb upstream of the SOX9 gene.
Resumo:
The structural peculiarities of a protein are related to its biological function. In the fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl intermediates from one enzyme to the other. The carrier has to recognize several enzymatic counterparts, specifically interact with each of them, and finally transiently deliver the carried substrate to the active site. Carry out such a complex game requires the players to be flexible and efficiently adapt their structure to the interacting protein or substrate. In a drug discovery effort, the structure-function relationships of a target system should be taken into account to optimistically interfere with its biological function. In this doctoral work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in Plasmodium falciparum is investigated by means of molecular simulations. The key steps considered include the delivery of acyl substrates and the structural rearrangements of catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme recognition and interaction are also put forward. The structural features of the target have driven the selection of proper drug discovery tools, which captured the dynamics of biological processes and could allow the rational design of novel inhibitors. The model may be perspectively used for the identification of novel pathway-based antimalarial compounds.
Resumo:
The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.
Resumo:
Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element resembling gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (containing the genes pitA, sipA, pitB, srtG1, and srtG2) codes for a novel functional pilus in pneumococcus. Therefore, there are two pilus islets identified so far in this pathogen (PI-1 and PI-2). Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. PI-2 is associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging in both industrialized and developing countries. Interestingly, strains belonging to clonal complex 271 (CC271) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that may play a role in the initial host cell contact to the respiratory tract. In addition, the pilus proteins are potential antigens for inclusion in a new generation of pneumococcal vaccines. Adherence by pili could represent important factor in bacterial community formation, since it has been demonstrated that bacterial community formation plays an important role in pneumococcal otitis media. In vitro quantification of bacterial community formation by S. pneumoniae was performed in order to investigate the possible role of pneumococcal pili to form communities. By using different growth media we were not able to see clear association between pili and community formation. But our findings revealed that strains belonging to MLST clonal complex CC15 efficiently form bacterial communities in vitro in a glucose dependent manner. We compared the genome of forty-four pneumococcal isolates discovering four open reading frames specifically associated with CC15. These four genes are annotated as members of an operon responsible for the biosynthesis of a putative lanctibiotic peptide, described to be involved in bacterial community formation. Our experiments show that the lanctibiotic operon deletion affects glucose mediated community formation in CC 15 strain INV200. Moreover, since glucose consumption during bacterial growth produce an acidic environment, we tested bacterial community formation at different pH and we showed that the lanctibiotic operon deletion affected pH mediated community formation in CC 15 strain INV200. In conclusion, these data demonstrate that the putative lanctibiotic operon is associated with pneumococcal CC 15 strains in vitro bacterial community formation.
Resumo:
Part I : A zinc finger gene Tzf1 was cloned in the earlier work of the lab by screening a ë-DASH2 cDNA expression library with an anti-Rat SC antibody. A ë-DASH2 genomic DNA library and cosmid lawrist 4 genomic DNA library were screened with the cDNA fragment of Tzf1 to determine the genomic organization of Tzf1. Another putative zinc finger gene Tzf2 was found about 700 bp upstream of Tzf1.RACE experiment was carried out for both genes to establish the whole length cDNA. The cDNA sequences of Tzf and Tzf2 were used to search the Flybase (Version Nov, 2000). They correspond to two genes found in the Flybase, CG4413 and CG4936. The CG4413 transcript seems to be a splicing variant of Tzf transcripts. Another two zinc finger genes Tzf3 and Tzf4 were discovered in silico. They are located 300 bp away from Tzf and Tzf2, and a non-tandem cluster was formed by the four genes. All four genes encode proteins with a very similar modular structure, since they all have five C2H2 type zinc fingers at their c-terminal ends. This is the most compact zinc finger protein gene cluster found in Drosophila melanogaster.Part II: 34,056 bp insert of the cosmid 19G11