986 resultados para Plant morphology
Resumo:
Campylobacter occur in fresh retail poultry products as a result of their colonization of the gastro-intestinal tract of chickens during growth. Feed additives could be used for suppression of Campylobacter levels in the chickens prior to slaughter. To address this opportunity, feed manufacturers are targeting natural antimicrobials from plant material as new forms of consumer-accepted feed additives. However, to be practical, these natural antimicrobials must be effective at low concentrations. The current study has validated an improved laboratory method to study minimal inhibitory concentrations of plant compounds and their combinations against Campylobacter. The assay was shown to be valid for testing lipid-soluble and water-soluble plant extracts and byproducts from the food industry. The study screened 29 extracts or plant-derived compounds and their mixtures for anti-Campylobacter activity using a laboratory assay. Combinations of oregano, lactic acid, and sorghum byproduct showed effective synergy in anti-Campylobacter activity. The synergies allowed a large reduction in the concentration of the individual compounds needed to kill the bacteria with an 80% reduction in concentration being achieved for oregano essential oil. The assay gives rise to further opportunities for the testing of a greater range of combinations of plant-derived compounds and other natural antimicrobials. The method is robust, simple, and easily automated, and it could be used to adjust the cost of feed formulations by reducing costs associated with antimicrobial feed additives.
Resumo:
Parthenium hysterophorus L., (Asteraceae) commonly known as parthenium weed, is a highly invasive plant that has become a problematic weed of pasture lands in Australia and many other countries around the world. For the management of this weed, an integrated approach comprising biological control and plant competition strategies was tested in southern central Queensland. Two competitive pasture plant species (butterfly pea and buffel grass), selected for their high competitive ability, worked successfully with the biological control agent (Epiblema strenuana Walker) to synergistically reduce the biomass of parthenium weed, by between 62 and 69%. In the presence of biological control agent, the corresponding biomass of competitive plants, butterfly pea and buffel grass increased in comparison to when the biological control agent had been excluded, by 15 and 35%, respectively. This suggests that biological control and competitive plants can complement one another to bring about improved management of parthenium weed in Australia. Further, this approach may be adopted in countries where some of the biological control agents are already present including South Africa, Ethiopia, India, Pakistan and Nepal.
Resumo:
Increasing organic carbon inputs to agricultural soils through the use of pastures or crop residues has been suggested as a means of restoring soil organic carbon lost via anthropogenic activities, such as land use change. However, the decomposition and retention of different plant residues in soil, and how these processes are affected by soil properties and nitrogen fertiliser application, is not fully understood. We evaluated the rate and extent of decomposition of 13C-pulse labelled plant material in response to nitrogen addition in four pasture soils of varying physico-chemical characteristics. Microbial respiration of buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) residues was monitored over 365-days. A double exponential model fitted to the data suggested that microbial respiration occurred as an early rapid and a late slow stage. A weighted three-compartment mixing model estimated the decomposition of both soluble and insoluble plant 13C (mg C kg−1 soil). Total plant material decomposition followed the alkyl C: O-alkyl C ratio of plant material, as determined by solid-state 13C nuclear magnetic resonance spectroscopy. Urea-N addition increased the decomposition of insoluble plant 13C in some soils (≤0.1% total nitrogen) but not others (0.3% total nitrogen). Principal components regression analysis indicated that 26% of the variability of plant material decomposition was explained by soil physico-chemical characteristics (P = 0.001), which was primarily described by the C:N ratio. We conclude that plant species with increasing alkyl C: O-alkyl C ratio are better retained as soil organic matter, and that the C:N stoichiometry of soils determines whether N addition leads to increases in soil organic carbon stocks.
Resumo:
Exotic plant pests (EPPs) threaten production, market access and sustainability of Australian plant production systems. For the grains industry there are over 600 identified EPPs of which 54 are considered high priority, posing a significant threat. Despite Australia’s geographical isolation and strong quarantine systems, the threat from EPPs has never been higher with the increasing levels of travel and trade, emphasising the need for improving our efforts in prevention, preparedness and surveillance for EPPs.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.
Resumo:
The informal taxon ‘genus Chile’ of Brundin, based solely on pupal exuviae of a podonomine Chironomidae, has remained inadequately known for half a century. New collections reveal life associations, and provide molecular data to hypothesise a precise phylogenetic placement in the austral Podonominae. A densely sampled molecular phylogeny based on two nuclear and one mitochondrial DNA markers shows ‘genus Chile’ to be the sister group to Podonomopsis Brundin, 1966. Within Podonomopsis a clade of South American species is sister to all Australian species. We discuss how to rank such a sister group taxon and treat ‘genus Chile’ as a new subgenus Araucanopsis, subg. nov. with the new species, Podonomopsis (Araucanopsis) avelasse, sp. nov. from Chile and Argentina as genotype of the monotypic subgenus. We describe P. (A.) avelasse in all stages and provide an expanded diagnosis and description of Podonomopsis to include Araucanopsis. A dated biogeographic hypothesis (chronogram) infers the most recent common ancestor (tmcra) of expanded Podonomopsis at 95 million years ago (Mya) (68–122 Mya 95% highest posterior density), ‘core’ Podonomopsis at 83 Mya (58–108) and Australian Podonomopsis at 65 Mya (44–87). All dates are before the South America–Australia geological separation through Antarctica, supporting previous conclusions that the taxon distribution is ‘Gondwanan’ in origin. Podonomopsis, even as expanded here, remains unknown from New Zealand or elsewhere on extant Zealandia.
Resumo:
This paper presents a method of designing a minimax filter in the presence of large plant uncertainties and constraints on the mean squared values of the estimates. The minimax filtering problem is reformulated in the framework of a deterministic optimal control problem and the method of solution employed, invokes the matrix Minimum Principle. The constrained linear filter and its relation to singular control problems has been illustrated. For the class of problems considered here it is shown that the filter can he constrained separately after carrying out the mini maximization. Numorieal examples are presented to illustrate the results.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
The reliable assessment of macrophyte biomass is fundamental for ecological research and management of freshwater ecosystems. While dry mass is routinely used to determine aquatic plant biomass, wet (fresh) mass can be more practical. We tested the accuracy and precision of wet mass measurements by using a salad spinner to remove surface water from four macrophyte species differing in growth form and architectural complexity. The salad spinner aided in making precise and accurate wet mass with less than 3% error. There was also little difference between operators, with a user bias estimated to be below 5%. To achieve this level of precision, only 10–20 turns of the salad spinner are needed. Therefore, wet mass of a sample can be determined in less than 1 min. We demonstrated that a salad spinner is a rapid and economical technique to enable precise and accurate macrophyte wet mass measurements and is particularly suitable for experimental work. The method will also be useful for fieldwork in situations when sample sizes are not overly large.
Resumo:
Mango decline disease has become a major cause of tree losses of about 7-10% in all mango growing areas of Pakistan. This study evaluated the effectiveness of plant activators used in conjunction with the fungicide thiophanate methyl in managing mango decline disease. The study was conducted in the Multan district using trees rated as 1-2 on a decline severity scale and displaying symptoms of gummosis, bark splitting, canker formation, and leaf drooping. Experimental treatments included three plant activators viz. Bion, Planofix, and Root king in conjunction with or without thiophanate methyl, delivered through a macro infusion system. This was the first time a macro infusion system had been used in Pakistan. The injection system delivered the fungicide/activator mixture into the tree trunk under pressure through a series of holes bored into the xylem tissue. Tree disease symptoms were recorded fortnightly to assess the treatment efficacy. After three months, thiophanate methyl, in combination with Bion, was found to be the most effective treatment with trees displaying no apparent disease symptoms. When thiophanate methyl was used alone, or in combination with Root king and Planofix, the symptoms of bark splitting and gummosis persisted.
Resumo:
Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), is a major environmental weed in Australia. Two forms of the weed with distinctive leaf morphology and reproductive traits, including varying fruit size, occur in Queensland, Australia. The long pod form occurs in a few localities in Queensland, while the short pod form is widely distributed in Queensland and northern part of New South Wales. This investigation aimed to evaluate germination behavior and occurrence of polyembryony (production of multiple seedlings from a single seed) in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20°C, 15/25°C, 20/30°C, 30/45°C and 25°C, representing ambient temperature conditions of the region. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from short pod plants exhibited significantly higher germination rates and higher occurrence of polyembryony than those from long pod plants. Seeds from long pod plants did not germinate at the lowest temperature of 10/20°C; in contrast, those of the short pod form germinated under this condition, albeit at a lower rate (reaching a maximum 45% germination at week 12). Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed plants in Australia, while the long pod is confined to a few localities. The results have implication in predicting future range of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed.
Resumo:
The usual task in music information retrieval (MIR) is to find occurrences of a monophonic query pattern within a music database, which can contain both monophonic and polyphonic content. The so-called query-by-humming systems are a famous instance of content-based MIR. In such a system, the user's hummed query is converted into symbolic form to perform search operations in a similarly encoded database. The symbolic representation (e.g., textual, MIDI or vector data) is typically a quantized and simplified version of the sampled audio data, yielding to faster search algorithms and space requirements that can be met in real-life situations. In this thesis, we investigate geometric approaches to MIR. We first study some musicological properties often needed in MIR algorithms, and then give a literature review on traditional (e.g., string-matching-based) MIR algorithms and novel techniques based on geometry. We also introduce some concepts from digital image processing, namely the mathematical morphology, which we will use to develop and implement four algorithms for geometric music retrieval. The symbolic representation in the case of our algorithms is a binary 2-D image. We use various morphological pre- and post-processing operations on the query and the database images to perform template matching / pattern recognition for the images. The algorithms are basically extensions to classic image correlation and hit-or-miss transformation techniques used widely in template matching applications. They aim to be a future extension to the retrieval engine of C-BRAHMS, which is a research project of the Department of Computer Science at University of Helsinki.
Resumo:
This paper presents a comparative population dynamics study of three closely related species of buttercups (Ranunculus repens, R. acris, and R. bulbosus). The study is based on an investigation of the behaviour of the seeds in soil under field conditions and a continuous monitoring of survival and reproduction of some 9000 individual plants over a period of 21/2 years in a coastal grassland in North Wales. The data were analysed with the help of an extension of Leslie's matrix method which makes possible an simultaneous treatment of vegetative and sexual reproduction. It was found that R. repens (a) depends more heavily on vegetative as compared with sexual reproduction, (b) shows indications of negatively density-dependent population regulation, and (c) exhibits little variation in population growth rates from site to site and from one year to the next. In contrast, R. bulbosus (a) depends exclusively on sexual reproduction, (b) shows indications of a positively density-dependent population behaviour, and (c) exhibits great variation in population growth rates from site to site and from one year to the next. R. acris exhibits an intermediate behaviour in all these respects. It is suggested that the attributes of R. repens are those expected of a species inhabiting a stable environment, while R. bulbosus exhibits some of the characteristics of a fugitive species.