978 resultados para Physical and chemical characteristics
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Starches from eight soft wheat samples (two parent lines and six offspring) were isolated; relationships between their structures and properties were examined. Branch chain-length distributions of amylopectins were determined by using high-performance anion exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector (HPAEC-ENZ-PAD). Results showed that the average chain length of the eight samples varied at DP 25.6-26.9. Starch samples of lines 02, 60, 63, 95, and 114 consisted of amylopectins with more long chains (DP greater than or equal to 37) and longer average chain length (DP 26.2-26.9) than that of other samples. These starch samples of longer branch chain length displayed higher gelatinization temperatures (55.3-56.5degreesC) than that of other samples (54.4-54.9degreesC) and higher peak viscosity (110-131 RVU) and lower pasting temperature (86.3-87.6degreesC) than others (83-100 RVU and 88.2-88.9degreesC, respectively). The M-w of amylopectins, determined by using high-performance size exclusion chromatography equipped with multiangle laser-light scattering and refractive index detectors (HPSEC-MALLS-RI), were similar for all samples (6.17 x 10(8) to 6.97 x 10(8)). There were no significant differences in amylose and phosphorus contents between samples. These results indicated that physical properties of wheat starch were affected by the branch-chain length of amylopectin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of niobia addition on the phase formation and dielectric properties of Pb(Zr0.45Ti0.55)O-3 powder prepared from polymeric precursor was analyzed. The weight fraction and unit-cell volume of the tetragonal phase decreased, and the mass fraction of the rhombohedral phase increased, with increasing niobia concentration. The rhombohedral unit-cell volume increased up to 5 mol% of added Nb and then decreased. Small amounts of pyrochlore and tetragonal zirconia phases were observed in PZT powder with more than 10 mol% Nb. These results were interpreted as an indication that the Nb ion was substituted for the zirconium ion in the tetragonal phase. For sintered PZT samples at 1100 degrees C, no free-zirconia phase was observed. The dielectric constant increased with the niobia addition up to 5 mol% and decreased for higher concentrations. The Curie temperature decreased with niobia addition up to 10 mol% before the formation of pyrochlore phase. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Studies indicate that teachers constitute a professional segment, in which the work characteristics and the demands originating from the act of teaching, favor the emergence of sickness, concerning physical or emotional aspects. The present work aimed to describe physical and postural aspects during the working activity of teachers. A total of 120 elementary school teachers (1st to 8th grade) took part in the survey. For data collection, a questionnaire was applied: it included personal and occupational information, perception of discomfort and being off work; physical strength activities; posture at work and physical conditioning activities. The average age of teachers of the present sample corresponds to 35,8 years. In relation to activities which generate more physical strength, the answer none of the activities was predominant with 30 answers; followed by writing on the board, standing up during the period of classes, explanation of the subjects, class elaboration, correction of homework and others. The area of the body with higher amount of occurrences and prevalent discomfort referred to the lower limbs and spinal cord. These data inform the necessity of investing in prevention programs for the teachers, in order to develop strategies into the organizational context and interventions at the work environment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A field experiment was conducted with chamomile (Chamomilla recutita [L.] Rauschert), in an area of the Olericulture and Medicinal Plants of the Horticulture Department at UNESP - Jaboticabal Campus, with the aim to evaluate the influence of organic and chemical fertilization on the yield of flowers, and content and composition of the essential oil of chamomile. The experimental design for the yield of flowers consisted of randomized blocks with 7 treatments and 4 replications, for the analysis of the contents and composition of the oil, the completely randomized block was used and for analysis of the correlation between harvesting and treatment, the split-plot design into randomized blocks was used. The treatments tested were: no fertilization, green manure (Mucuna aterrima + Crotalaria spectabilis), green manure (plant cocktail), organic fertilizer (farmyard manure), N as urea, N as ammonium sulphate, NPK with N supplement as ammonium sulphate. There was no influence of the treatments on the yield of flowers nor on the essential oil content; on the other hand both characteristics did show significant differences in harvesting times (Tukey 5%). The main yield was 885.90 kg/ha dry flowers and the mean oil content was 0,86%. The green manure treatment (M. aterrima + C. spectabilis) showed a higher percentage of chamazulene content, with a highly significant difference in harvesting times (Tukey 1%). The a-bisabolol percentages did not evidence significant differences between treatments. However, among harvesting times, there was a variation. A negative correlation was verified between the chamazulene and abisabolol percentages; the first increasing - from 21.02 to 36.17% - and the latter decreasing - from 14.12 to 8.72 % - from the first to the sixth harvest. The observed mean content of chamazulene was 14.64 % and a-bisabolol was 16.72 %.
Resumo:
Habitat heterogeneity and use of physical and acoustic space in anuran communities in Southeastern Brazil. We intended to verify if structural and physiognomical characteristics of water bodies influence on the degree of overlap among calling sites of 23 anurans species, if anuran species use different calling sites in different water bodies, and if there is some relationship between the degree of advertisement call (based on seven call features) and calling site differentiation. Then, we determined calling sites (based in four variables) and recorded the advertisement call for anuran species that occurred in 10 water bodies of northwestern São Paulo State. We also determined the environmental heterogeneity (based in four environmental descriptors) for each water body. Males of most species used similar calling sites in each water body, probably because of the high uniformity of the environment, as a consequence of agricultural impacts on edge vegetation of the studied ponds. Most species (18 out of 19 species) called from different sites in the ponds where they occurred, which can be associated with differences in horizontal and vertical distribution of vegetation in the studied ponds. From the 19 species analyzed, only males of Pseudopaludicola aff. saltica called in sites with the same characteristics in different ponds. Advertisement call of Hylidae species was more similar to each other than were Leiuperidae and Leptodactylidae among themselves. The aquatic/terrestrial anurans (Bufonidae, Leiuperidae, Leptodactylidae and Microhylidae) occupied similar calling sites but presented quite distinct advertisement calls, while Hylidae species presented an inverse pattern: a high similarity on advertisement call features but used different calling sites, which indicates a niche complementarity between physical (calling site use) and acoustic (advertisement call) space use. © 2008 Departamento de Ciências Biológicas.
Resumo:
Extracellular xylanase and β-xylosidase production by a Penicillium janczewskii strain were investigated in liquid cultures with xylan from oat spelts under different physical and chemical conditions. The selected conditions for optimized production of xylanase and β-xylosidase were 7 days, pH 6.5, at 30 °C and 8 days, pH 5.0, at 25 °C, respectively. The xylanase exhibited optimal activity in pH 5.0 at 50 °C and the β- xylosidase in pH 4.0 at 75 °C. The xylanase was more stable at pH 6.0 to 9.5, while the β-xylosidase remained stable at pH ranging from 1.6 to 5.5. The xylanase half-life (T50) at 40, 50, and 60 °C was 183, 15, and 3 min, respectively. β-xylosidase half-life was 144, 8, and 4 min at 50, 65, and 75 °C, respectively. When applied to the biobleaching of Eucalyptus kraft pulp, xylanase dosages of 2 and 4 U/g dried pulp reduced, respectively, kappa number by 3.0 and 3.3 units after 1 h treatment, demonstrating that the use of P. janczewskii xylanases in this process is quite promising. The pulp viscosity was not altered, confirming the absence of cellulolytic enzymes in the fungal extract.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The construction of synthetic cells is one of the major goals of bioengineering. The most successful approach consists in the encapsulation of biochemical materials (DNA, RNA, enzymes, etc.) inside lipid vesicles (liposomes), mimicking a cell structure. In this contribution, that also aims at introducing the reader to 'chemical synthetic biology,' we describe the current state of the art of 'semi-synthetic minimal cells' (SSMCs), namely, cell-like structures containing the minimal number of biological compounds that are required to reconstruct a function of interest. We will first describe how the concept of the minimal cell was originated and its relation with the theory of autopoiesis, then we review the most advanced results focused on genetic/metabolic networks inside liposomes. Next, we emphasize that relevance of physical aspects (too often neglected) that impact on the solute entrapment process, and finally we discuss new technological trends in SSMC research that will probably allow their future use in biotechnology. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.
Resumo:
The term biochar refers to materials with diverse chemical, physical and physicochemical characteristics that have potential as a soil amendment. The purpose of this study was to investigate the P sorption/desorption properties of various slow biochars and one fast pyrolysis biochar and to determine how a fast pyrolysis biochar influences these properties in a degraded tropical soil. The fast pyrolysis biochar was a mixture of three separate biochars: sawdust, elephant grass and sugar cane leaves. Three other biochars were made by slow pyrolysis from three Amazonian tree species (Lacre, Ingá and Embaúba) at three temperatures of formation (400 °C, 500 °C, 600 °C). Inorganic P was added to develop sorption curves and then desorbed to develop desorption curves for all biochar situations. For the slow pyrolysis, the 600 oC biochar had a reduced capacity to sorb P (4-10 times less) relative to those biochars formed at 400 °C and 500 °C. Conversely, biochar from Ingá desorbed the most P. The fast pyrolysis biochar, when mixed with degraded tropical mineral soil, decreased the soil's P sorption capacity by 55% presumably because of the high soluble, inorganic P prevalent in this biochar (909 mg P/kg of biochar). Phosphorus desorption from the fast pyrolysis biochar/soil mixture not only exhibited a common desorption curve but also buffered the soil solution at a value of ca. 0.2 mg/L. This study shows the diversity in P chemistry that can be expected when biochar is a soil amendment and suggests the potential to develop biochars with properties to meet specific objectives. © 2013 British Society of Soil Science.
Resumo:
The objective of this study was to evaluate the density, density profile, water swelling and absorption, modulus of elasticity and rupture from static bending, and tensile strength of experimental medium-density fiberboards manufactured using Dendrocalamus giganteus (Munro bamboo). The fiber production was carried out through the chemo-thermo-mechanical pulping process with four different conditions. The panels were made with 10% urea formaldehyde resin based on dry weight of the fibers, 2.5% of a catalyzer (ammonium sulfate) and 2% paraffin. The results indicate that treatments with the highest alkali (NaOH) percentage, time and splinter heating temperature improved the physical properties of the panels. The root-fiber interface was evaluated through scanning electron microscopy in fracture zones, which revealed fibers with thick, inflexible walls. The panels' mechanical properties were affected due to the fiber wall characteristics and interaction with resin. Giant bamboo fiber has potential for MDF production, but other studies should be carried out.