961 resultados para Out-Steady-State Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the analysis of a uniform sample of 31 light curves of the nova-like variable UU Aqr with eclipse-mapping techniques. The data were combined to derive eclipse maps of the average steady-light component, the long-term brightness changes, and the low- and high-frequency flickering components. The long-term variability responsible for the ""low-brightness`` and ""high-brightness`` states is explained in terms of the response of a viscous disk to changes of 20%-50% in the mass transfer rate from the donor star. Low- and high-frequency flickering maps are dominated by emission from two asymmetric arcs reminiscent of those seen in the outbursting dwarf nova IP Peg, and they are similarly interpreted as manifestations of a tidally induced spiral shock wave in the outer regions of a large accretion disk. The asymmetric arcs are also seen in the map of the steady light aside from the broad brightness distribution of a roughly steady-state disk. The arcs account for 25% of the steady-light flux and are a long-lasting feature in the accretion disk of UU Aqr. We infer an opening angle of 10 degrees +/- 3 degrees for the spiral arcs. The results suggest that the flickering in UU Aqr is caused by turbulence generated after the collision of disk gas with the density-enhanced spiral wave in the accretion disk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ejection of gas out of the disc in late-type galaxies is related to star formation and is mainly due to the explosion of Type II supernovae (SN II). In a previous paper, we considered the evolution of a single Galactic fountain, that is, a fountain powered by a single SN cluster. Using three-dimensional hydrodynamical simulations, we studied in detail the fountain flow and its dependence with several factors, such as the Galactic rotation, the distance to the Galactic centre and the presence of a hot gaseous halo. As a natural followup, this paper investigates the dynamical evolution of multiple generations of fountains generated by similar to 100 OB associations. We have considered the observed size-frequency distribution of young stellar clusters within the Galaxy in order to appropriately fuel the multiple fountains in our simulations. Most of the results of the previous paper have been confirmed, like for example the formation of intermediate velocity clouds above the disc by the multiple fountains. Also, this work confirms the localized nature of the fountain flows: the freshly ejected metals tend to fall back close to the same Galactocentric region where they are delivered. Therefore, the fountains do not change significantly the radial profile of the disc chemical abundance. The multiple fountain simulations also allowed us to consistently calculate the feedback of the star formation on the halo gas. We found that the hot gas gains about 10 per cent of all the SN II energy produced in the disc. Thus, the SN feedback more than compensate for the halo radiative losses and allow for a quasi steady-state disc-halo circulation to exist. Finally, we have also considered the possibility of mass infall from the intergalactic medium and its interaction with the clouds that are formed by the fountains. Though our simulations are not suitable to reproduce the slow rotational pattern that is typically observed in the haloes around the disc galaxies, they indicate that the presence of an external gas infall may help to slow down the rotation of the gas in the clouds and thus the amount of angular momentum that they transfer to the coronal gas, as previously suggested in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a method to conclude about the existence of secondary bifurcations or isolas of steady state solutions for parameter dependent nonlinear partial differential equations. The technique combines the Global Bifurcation Theorem, knowledge about the non-existence of nontrivial steady state solutions at the zero parameter value and explicit information about the coexistence of multiple nontrivial steady states at a positive parameter value. We apply the method to the two-dimensional Swift-Hohenberg equation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the photophysical properties of single-walled carbon nanotube (SWNT) suspensions In toluene solutions of poly[9,9-dioctylfluorenyl-2,7-diyl](PFO). Steady-state and time-resolved photoluminescence spectroscopy in the near-infrared and visible spectral regions are used to study the interaction of the dispersed SWNTs with the wrapped polymer. Molecular dynamics simulations of the PFO-SWNT hybrids in toluene were carried out to evaluate the energetics of different wrapping geometries. The simulated fluorescence spectra in the visible region were obtained by the quantum chemical ZINDO-CI method, using a sampling of structures obtained from the dynamics trajectories. The tested schemes consider polymer chains aligned along the nanotube axis, where chirality has a minimal effect, or forming helical structures, where a preference for high chiral angles is evidenced. Moreover, toluene affects the polymer structure favoring the helical conformation. Simulations show that the most stable hybrid system is the PFO-wrapped (8,6) nanotube, in agreement with the experimentally observed selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion of COQ10 in Saccharomyces cerevisiae elicits a respiratory defect characterized by the absence of cytochrome c reduction, which is correctable by the addition of exogenous diffusible coenzyme Q(2). Unlike other coq mutants with hampered coenzyme Q(6) (Q(6)) synthesis, coq10 mutants have near wild-type concentrations of Q(6). In the present study, we used Q-cycle inhibitors of the coenzyme QH(2)-cytochrome c reductase complex to assess the electron transfer properties of coq10 cells. Our results show that coq10 mutants respond to antimycin A, indicating an active Q-cycle in these mutants, even though they are unable to transport electrons through cytochrome c and are not responsive to myxothiazol. EPR spectroscopic analysis also suggests that wild-type and coq10 mitochondria accumulate similar amounts of Q(6) semiquinone, despite a lower steady-state level of coenzyme QH(2)-cytochrome c reductase complex in the coq10 cells. Confirming the reduced respiratory chain state in coq10 cells, we found that the expression of the Aspergillus fumigatus alternative oxidase in these cells leads to a decrease in antimycin-dependent H(2)O(2) release and improves their respiratory growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the applications of anew carbon paste electrode containing fibers of coconut (Cocus nucifera L) fruit, which are very rich in peroxidase enzymes naturally immobilized on its structure. The new sensor was applied for the amperometric quantification of benzoyl peroxide in facial creams and dermatological shampoos. The amperometric measurements were performed in 0.1 mol L(-1) phosphate buffer (pH 5.2), at 0.0 V (versus Ag/AgCl). On these conditions, benzoyl peroxide was rapidly determined in the 5.0-55 mu mol L(-1), with a detection limit of 2.5 mu mol L(-1) (s/n = 3), response time of 4.1 s (90% of the steady state) and sensitivity limit of 0.33 A mol L(-1) cm(-2). The amperometric results are in good agreement with those obtained by spectrophotometric technique, used as a standard method. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, 3IL(cis-L), (3)MLCT(Re -> me4phen), and (3)IL(Me4phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re -> Me4phen) and (3)IL(Me4phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (Delta E(a)) for interconversion between (3)MLCT(Re -> me4Phen) and (3)IL(Me4phen) emitting states were determined. For L = cis-stpy, Delta E(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, Delta E(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(me4phen) state to (3)MLCT(Re -> Me4phen), k(i) congruent to 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many factors can affect the quality of diesel oil, in particular the degradation processes that are directly related to some organosulfur compounds. During the degradation process, these compounds are oxidized into their corresponding sulfonic acids, generating a strong acid content during the process. p-Toluene sulfonic acid analysis was performed using the linear sweep voltammetry technique with a platinum ultramicroelectrode in aqueous solution containing 3 mol L(-1) potassium chloride. An extraction step was introduced prior to the voltammetric detection in order to avoid the adsorption of organic molecules, which inhibit the electrochemical response. The extraction step promoted the transference of sulfonic acid from the diesel oil to an aqueous phase. The method was accurate and reproducible, with detection and quantification limits of 5 ppm and 15 ppm, respectively. Recovery of sulfonic acid was around 90%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solar thermal system with seasonal borehole storage for heating of a residential area in Anneberg, Sweden, approximately 10 km north of Stockholm, has been in operation since late 2002. Originally, the project was part of the EU THERMIE project “Large-scale Solar Heating Systems for Housing Developments” (REB/0061/97) and was the first solar heating plant in Europe with borehole storage in rock not utilizing a heat pump. Earlier evaluations of the system show lower performance than the preliminary simulation study, with residents complaining of a high use of electricity for domestic hot water (DHW) preparation and auxiliary heating. One explanation mentioned in the earlier evaluations is that the borehole storage had not yet reached “steady state” temperatures at the time of evaluation. Many years have passed since then and this paper presents results from a new evaluation. The main aim of this work is to evaluate the current performance of the system based on several key figures, as well as on system function based on available measurement data. The analysis show that though the borehole storage now has reached a quasi-steady state and operates as intended, the auxiliary electricity consumption is much higher than the original design values largely due to high losses in the distribution network, higher heat loads as well as lower solar gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A literature survey and a theoretical study were performed to characterize residential chimney conditions for flue gas flow measurements. The focus is on Pitot-static probes to give sufficient basis for the development and calibration of a velocity pressure averaging probe suitable for the continuous dynamic (i.e. non steady state) measurement of the low flow velocities present in residential chimneys. The flow conditions do not meet the requirements set in ISO 10780 and ISO 3966 for Pitot-static probe measurements, and the methods and their uncertainties are not valid. The flow velocities in residential chimneys from a heating boiler under normal operating condi-tions are shown to be so low that they in some conditions result in voiding the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear Reynolds number dependent calibration coefficient that is correcting for the viscous effects is needed to avoid significant measurement errors. The wide range of flow velocity during normal boiler operation also results in the flow type changing from laminar, across the laminar to turbulent transition region, to fully turbulent flow, resulting in significant changes of the velocity profile during dynamic measurements. In addition, the short duct lengths (and changes of flow direction and duct shape) used in practice are shown to result in that the measurements are done in the hydrodynamic entrance region where the flow velocity profiles most likely are neither symmetrical nor fully developed. A measurement method insensitive to velocity profile changes is thus needed, if the flow velocity profile cannot otherwise be determined or predicted with reasonable accuracy for the whole measurement range. Because of particulate matter and condensing fluids in the flue gas it is beneficial if the probe can be constructed so that it can easily be taken out for cleaning, and equipped with a locking mechanism to always ensure the same alignment in the duct without affecting the calibration. The literature implies that there may be a significant time lag in the measurements of low flow rates due to viscous effects in the internal impact pressure passages of Pitot probes, and the significance in the discussed application should be studied experimentally. The measured differential pressures from Pitot-static probes in residential chimney flows are so low that the calibration and given uncertainties of commercially available pressure transducers are not adequate. The pressure transducers should be calibrated specifically for the application, preferably in combination with the probe, and the significance of all different error sources should be investigated carefully. Care should be taken also with the temperature measurement, e.g. with averaging of several sensors, as significant temperature gradients may be present in flue gas ducts.