959 resultados para Newton Principia fondamenti meccanica classica
Resumo:
No matter how aspirational they are, management accountants face a series of roadblocks in the course of building careers in organisations. Experts reveal the four key obstacles that need to be addressed in the course of becoming global leaders.
Resumo:
There is an ongoing level of organizational-wide change (such as empowerment and downsizing) occurring within the Australian health care sector. However, there is a paucity of empirical evidence on how public and nonprofit sector nurses cope with these organizational-wide change initiatives and their consequences on individual and work outcomes. This will be the primary aim of the current paper. To this end, a path model is developed base on an integration of existing theoretical perspectives on occupational stress, change management, and person-organizational fit. Data were collected from 252 public and not-for-profit sector nurses. The path analysis suggests that public and nonprofit nurses experience positive and negative change initiatives. Negative change initiatives resulted in an increase in the level of administrative-related stressors. Nurses with more congruent values report less experience with administrative stressors. As nurses experienced more administrative stressors, they tend to report more job dissatisfaction. Nurses whose values were more congruent during organizational change reported higher level of psychological wellbeing. Nurses who were had higher level of psychological wellbeing were found to have higher job satisfaction, which subsequently led to a higher level of organizational commitment.
Resumo:
A Jacobian-free variable-stepsize method is developed for the numerical integration of the large, stiff systems of differential equations encountered when simulating transport in heterogeneous porous media. Our method utilises the exponential Rosenbrock-Euler method, which is explicit in nature and requires a matrix-vector product involving the exponential of the Jacobian matrix at each step of the integration process. These products can be approximated using Krylov subspace methods, which permit a large integration stepsize to be utilised without having to precondition the iterations. This means that our method is truly "Jacobian-free" - the Jacobian need never be formed or factored during the simulation. We assess the performance of the new algorithm for simulating the drying of softwood. Numerical experiments conducted for both low and high temperature drying demonstrates that the new approach outperforms (in terms of accuracy and efficiency) existing simulation codes that utilise the backward Euler method via a preconditioned Newton-Krylov strategy.
Resumo:
The rapid growth in use of the Internet as a business tool provides a new perspective in the study of the organizational challenges of new technologies. The innovation literature has grown vastly since its establishment in the 1920s, covering a broad range of disciplines (Foxall 1984) and measures a wide variety of variables (Rogers 1995). At first glance, studies that look at the relationship between innovation and firm survival appear contradictory. However, the results appear compatible when additional factors, such as industry type, organizational age, company size or the duration of the study are taken into account.
Resumo:
This paper studies time integration methods for large stiff systems of ordinary differential equations (ODEs) of the form u'(t) = g(u(t)). For such problems, implicit methods generally outperform explicit methods, since the time step is usually less restricted by stability constraints. Recently, however, explicit so-called exponential integrators have become popular for stiff problems due to their favourable stability properties. These methods use matrix-vector products involving exponential-like functions of the Jacobian matrix, which can be approximated using Krylov subspace methods that require only matrix-vector products with the Jacobian. In this paper, we implement exponential integrators of second, third and fourth order and demonstrate that they are competitive with well-established approaches based on the backward differentiation formulas and a preconditioned Newton-Krylov solution strategy.
Resumo:
This study seeks to examine the causality of non-nursing and nursing stressors on the job satisfaction of nurses and how coping strategies have a mediating influence on this relationship in the context of sector-wide reform. To conceptualize the relationships, a mediation path model was developed. Data were collected at two time points using a self-completed online survey over a six monthly interval. During time 1, 306 Australian nurses completed the online survey. In the first wave (time 1), 306 Australian nurses completed the survey. In the second wave (time 2), matched survey data were collected from 119 nurses. The analysis showed a significant causal relationship between time 1 administrative and role stressors and an increase in nursing stress in time 2. A significant relationship was also identified between job specific context stressors and the adoption of effective coping strategies to deal with increased level of change-induced stress and strain and the likelihood of reporting higher level of job satisfaction in time 2. This study contributes by providing an integrated theoretical perspective on how stress affects retention that has so far been elusive. This is useful to researchers wanting to examine this phenomenon further and practitioners responsible for implementing change programs.
Resumo:
Engineering asset management (EAM) is a rapidly growing and developing field. However, efforts to select and develop engineers in this area are complicated by our lack of understanding of the full range of competencies required to perform. This exploratory study sought to clarify and categorise the professional competencies required of individuals at different hierarchical levels within EAM. Data from 14 interviews and 61 on-line survey participants has informed the development of an initial Professional Competency Framework. The nine competency categories indicate that Engineers working in this field need to be able to collaborate and influence others, complete objectives within organizational guidelines and be able to manage themselves effectively. Limitations and potential uses in practice and research for this framework are discussed.
Resumo:
This paper examines whether recent innovation in market design can address persistent problems of housing choice and affordability in the inner and middle suburbs of Australian cities. Australia's ageing middle suburbs are the result of a low density and highly car-dependent garden city greenfield approach to planning that failed to consider possible future resource or environmental constraints on urban development (Newton et al., 2011). Described as 'greyfield' sites in contrast to greenfield (signalling the change from rural to urban land use) and 'brownfield' (being the transformation of former industrial use to mixed use, including housing), intensification of development in such areas is expected to deliver positive social, economic and environmental outcomes (Trubka et al., 2008; Gurran et al., 2006; Newton et al., 2011; Goodman et al., 2010). Yet despite broad policy consensus progress remains elusive (Major Cities Unit, 2010). In this paper we argue that the application of market design theory, specifically through the internet-based coordination of market information, offers a new policy approach and practical measures to address these problems.
Resumo:
Purpose: E-learning is an organisationally risky investment given the cost and poor levels of adoption by users. In order to gain a better understanding of this problem, a study was conducted into the use of e-learning in a rail organisation. Design/methodology/approach: Using an online survey, employees of a rail-sector organisation were questioned about their use and likelihood of adoption of e-learning. This study explores the factors that affect the way in which learners experience and perceive such systems. Using statistical analysis, twelve hypotheses are tested and explored. Relationships between learning satisfaction, intention to adopt and the characteristics of e-learning systems were established. Findings: The study found that e-learning characteristics can buffer the relationship between learner characteristics and intention to adopt further e-learning in the future. Further, we found that high levels of support can compensate individuals who are low in technological efficacy to adopt e-learning. Research limitations/implications: The cross-sectional design of the study and its focus on measuring intention to adopt as opposed to actual adoption are both limitations. Future research using longitudinal design and research employing a time lag design measuring actual adoption as well as intention are recommended. Practical implications: From a practical perspective, organizations can focus on the actual content and authenticity of the learning experience delivered by the e-learning system to significantly impact how employees will perceive and use e-learning in the future. Low technological efficacy individuals tend not to adopt new technology. Instead of changing individuals’ personalities, organizations can implement supportive policies and practices which would lead to higher e-learning adoption rate among low efficacy individuals. Originality/value: The study integrates technology adoption and learning literatures in developing enablers for e-learning in organizations. Further, this study collects data from rail employees, and therefore the findings are practical to an industry.
Resumo:
Background Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Methods Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Findings Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Interpretation Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Funding Bill & Melinda Gates Foundation.
Resumo:
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.
Resumo:
The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.