904 resultados para NONIONIC SURFACTANT
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Multi-sheet InGaN/GaN quantum dots (QDs) were grown successfully by surface passivation processing and low-temperature growth in metalorganic chemical vapor deposition. This method based on the principle of increasing the energy barrier of adatom hopping by surface passivation and low-temperature growth, is quite different from present methods. The InGaN quantum dots in the first layer of about 40-nm-wide and 15-nm-high grown by this method were revealed by atomic force microscopy. The InGaN QDs in upper layer grew bigger. To our knowledge, the current-voltage characteristics of multi-sheet InGaN/GaN QDs were measured for the fist time. Two kinds of resonance-tunneling-current features were observed which were attributed to the low-dimensional localization effect. Some current peaks only appeared in positive voltage for sample due to the non-uniformity of the QDs in the structure. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new method to form nanoscale InGaN quantum dots using MOCVD is reported, This method is much different from a method. which uses surfactant or the Stranski-Krastannow growth mode. The dots were formed by increasing the energy barrier for adatoms, which are hopping by surface passivation, and by decreasing the growth temperature. Thus, the new method can be called as a passivation-low-temperature method. Regular high-temperature GaN films were grown first and were passivated. A low-temperature thin layer of GaN dot was then deposited on the surface that acted as the adjusting layer. At last the high-density InGaN dots could be fabricated on the adjusting layer. Atomic force microscopy measurement revealed that InGaN dots were small enough to expect zero-dimensional quantum effects: The islands were typically 80 nm wide and 5 nm high. Their density was about 6 x 10(10) cm(-2). Strong photoluminescence emission from the dots is observed at room temperature, which is much stronger than that of the homogeneous InGaN film with the same growth time. Furthermore, the PL emission of the GaN adjusting layer shows 21 meV blueshift compared with the band edge emission of the GaN due to quantum confine effect. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Low temperature (similar to 500 degrees C) growth properties of Si1-xGex by disilane and solid-Ge molecular beam epitaxy have been studied with an emphasis on surface morphology and growth kinetics. It is found that low-temperature growth(<500 degrees C) is in layer-by-layer mode and atomically-smooth surfaces have been obtained in as-grown samples with large Ge composition (>0.5). Ge composition dependence on substrate temperature, Ge cell temperature and disilane flow rate have been investigated. It is found that in low-temperature growth (less than or equal to 500 degrees C) and under large disilane flux, Ge composition increases with the increase of Ge flux and further increase of Ge flux leads to the saturation of Ge composition. Similar compositional dependence has been found at different growth temperatures. The saturated composition increases with the decrease of substrate temperature. The results can be explained if H desorption is assumed to occur from both Si and Ge monohydrides without diffusional exchange and the presence of Ge enhances H desorption on a Si site. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The feasibility of biodiesel production from soapstock containing high water content and fatty matters by a solid acid catalyst was investigated. Soapstock was converted to high-acid acid oil (HAAO) by the hydrolysis by KOH and the acidulation by sulfuric acid. The acid value of soapstock-HAAO increased to 199.1 mg KOH/g but a large amount of potassium sulfate was produced. To resolve the formation of potassium sulfate, acid oil was extracted from soapstock and was converted to HAAO by using sodium dodecyl benzene sulfonate (SDBS). The maximum acid value of acid oil-HAAO was 194.2 mg KOH/g when the mass ratio of acid oil, sulfuric acid, and water was 10:4:10 at 2% of SDBS. In the esterification of HAAO using Amberylst-15, fatty acid methyl ester (FAME) concentration was 91.7 and 81.3% for soapstock and acid oil, respectively. After the distillation, FAME concentration became 98.1% and 96.7% for soapstock and acid oil. The distillation process decreased the total glycerin and the acid value of FAME produced a little.
Resumo:
Gas hydrate formation experiments were performed using methane in the presence of tetrahydrofuran (THF) in aqueous solution in a transparent bubble column in which a single pipe or a sintered plate was used to produce bubbles. The mole fraction of THF in aqueous solution was fixed at 6%. The hydrate formation kinetic behaviors on the surface of the rising bubble, the mechanical stability of hydrate shell formed on the surface of the bubble, the interactions among the bubbles with hydrate shell were observed and investigated morphologically. The rise velocities of individual bubbles with hydrate shells of different thickness and the consumption rates of methane gas were measured. A kinetic model was developed to correlate the experimentally measured gas consumption rate data. It was found that the hydrate formation rate on the surface of the moving bubble was high, but the formed hydrate shell was not very easy to be broken up. The bubbles with hydrate shells tended to agglomerate rather than merge into bigger bubble. This kind of characteristic of hydrate shell hindered the further formation of hydrate and led to the lower consumption rate of methane. The consumption rate of methane was found to increase with the decrease of temperature or increase of pressure. The increase of gas flux led to a linear increase in consumption rate of methane. It was demonstrated that the developed kinetic model could be used to correlate the consumption rate satisfyingly.
Resumo:
A kind of optical pH sensor was demonstrated that is based on a pH-sensitive fluorescence dye-doped (eosin) cellulose acetate (CA) thin-film modified microstructured polymer optical fiber (MPOF). It was obtained by directly inhaling an eosin-CA-acetic acid mixed solution into array holes in a MPOF and then removing the solvent (acetic acid). The sensing film showed different fluorescence intensities to different pH solutions in a pH range of 2.5-4.5. Furthermore, the pH response range could be tailored through doping a surfactant, hexadecyl trimethyl ammonium bromide (CTAB), in the sensing film. (c) 2007 Optical Society of America.
Resumo:
本文简要评述了扫描探针显微学研究的发展过程、目前状况及发展方向,着重介绍了扫描探针显微学(SPM)在分子组装体研究中的一些应用。采用扫描探针显微学结合电化学的方法对自组装膜(SAMs)、表面活性剂(surfactant)、纳米颗粒(nanoparticles)等分子组装体系进行了研究,并结合IR、QCM、XPS、XRD等多种手段对分子组装体在电极表面的形态和结构进行了探讨。主要结果如下:1.SPM研究以杂多酸为基础的分子组装体我们通过将AsMo_(11)V0_(40)~(4-)杂多酸阴离子从其酸性溶液中自吸附至金表面的方法,制备了一类新的无机自组装膜。我们利用QCM、STM和电化学方法分别研究了AsMo_(11)VO_(40)~(4-)自组装膜的吸附过程、在Au表面的结构和电化学性质。QCM数据表明这个自组装过程可以用Langmuir吸附等温式来描述,其吸附自由能为-20 KJ/mol。 通过QCM测得的AsMo_(11)VO_(40)~(4-)自组装膜的表面覆盖度的最大值为1.7 * 10~(-10)mol/cm~2,这相当于一个AsMo_(11)VO_(40)~(4-)阴离子的密堆积单层。AsMo_(11)VO_(40)~(4-)自组装膜的循环伏安图上出现三对可逆的氧化还原峰,每对峰所对应的自组装膜的表面覆盖度都亦为1.78 * 10~(-10) mol/cm2,和QCM结果一致。现场STM图像显示AsMo_(11)VO_(40)~(4-)自组装膜十分的均一没有如何多层或聚集体的结构。高分辨STM图进一步显示在Au(111)表面的sMo_(11)VO_(40)~(4-)自组装膜于+0.7 V(vs.Ag | AgCl)表现出二维有序的四方晶体结构,晶格间距为10-11 A。这个值与sMo_(11)VO_(40)~(4-)阴离子的直径十分接近。从STM图我们也估算出AsMo_(11)VO_(40)~(4-)自组装膜的表面覆盖度为1.8 * 10~(-10) mol/cm~2,这和QCM以及电化学的实验结果都很接近。我们进一步研究了一种新的以杂多酸为基础的有机无机复合膜--砷钼钒杂多酸的十一烷基吡啶盐(CPMVA)--的制备、结构和电催化性质。通过在这种盐的丙酮溶液中循环电位扫描,我们可以在HOPG电极表面制备稳定的CPMVA膜。我们利用XPS、STM和电化学多种手段来表征CPMVA膜的结构和性质。这些研究表明:在新剥离HOPG表面CPMVA膜的结构为自聚集的分子团,而在预阴极化HOPG表面CPMVA膜的结构为自有序单层。CPMVA膜在酸性和丙酮溶剂中部表现出可逆的氧化还原动力学行为,这说明这种新类型的膜甚至能在有机溶剂中用作催化剂。当溶液的pH值大于7.O时,CPMVA膜也能维持其稳定性,它对pH值的依赖程度明显小于其无机物形式的膜(H_4AsMo_(11)VO_(40))对pH值的依赖程度。CPMVA膜对Br0_3-的还原表现出很好的电催化活性,催化电流与BrO_3~-的浓度的平方成正比。这种有很高稳定性的新类型杂多酸膜在催化剂领域中将有很广阔的应用前景。2.电化学STM研究吸附在金属表面的表面活性剂聚集体由于电位诱导引起的结构变化表面活性剂在表面的吸附已广泛地被用于限制电极表面的活性和稳定溶液中的胶体和纳米粒子,但是人们对表面活性剂在电极表面的结构和由于电位变化所引起的结构改变并不清楚。在这个工作中我们利用现场STM观察了电位控制下表面活性剂十二烷基磺酸钠(SDS)在Au(111)表面的吸附。STM图像显示通过控制电位SDS在Au(111)表面有一从半圆柱胶束单层向致密双层膜过渡的构象变化。我们也建立了SDS聚集体在Au(111)表面电位诱导结构变化的模型。就我们所知,这是第一次系统地研究表面活性剂聚集体在金属表面的电位诱导结构变化。3.在固体表面构筑有序的聚苯胺分子导线我们提出了一种新的通过分子设计构筑有序聚苯胺分子导线的新方法。首先,根据Saveant的方法我们在HOPG表面修饰上有序的4-氨基苯单层,然后溶液中的苯胺分子通过阶跃的方法被层层电聚合在4-氨基苯单层修饰的HOPG表面,形成有序的聚苯胺分子导线。FTIR-ERS和XPS结果证实HOPG表面上形成了聚苯胺。SPM图显示在HOPG表面的聚苯胺平面结构为有序的3~(1/2) * 3~(1/2) R 30°。小角X-射线反射结果表明聚苯胺分子导线是垂直站立在HOPG表面。电化学测量进一步表明聚苯胺分子导线的形成有利于加速电子传递速率。这种先分子设计后电聚合的方法可能会成为一类在固体表面制备有序导电聚合物分子导线的新方法。依据上一个实验,我们在金表面通过自组装的方法构筑了绝缘分子导线。我们选择β-环糊精(β-CD)作为包络4-氨基硫酚的理想主体分子。β-CD和4-氨基硫酚形成的包络物首先被自组装到Au表面,然后也通过阶跃的方法被层层电聚合在自组装膜修饰的Au表面,形成有序的聚苯胺分子导线。FTIR-ERS和XPS结果证实Au表面上形成了聚苯胺。低电流STM(LC-STM)图像表明在Au(111)表面的聚苯胺分子线为六角的二维有序,分子与分子之间的最相邻距离为15.5±0.5 A。这种先进行CD超分子自组装后电聚合的方法可能会成为一类制备导电聚合物绝缘分子导线的新方法。4.SPM研究在HOPG表面电化学合成的纳米材料我们通过脉冲恒电位方法从稀的苯胺酸性溶液(1mM苯胺 + 1 M HClO_4)在HOPG表面制备聚苯胺纳米颗粒。我们利用FTIR-ERS、XPS、TM-AFM手段来表征聚苯胺纳米颗粒的组成和结构。FTIR-ERS和XPS结果表明制得的聚苯胺纳米颗粒主要以亚胺形式存在。TM-AFM图像显示分散于HOPG表面的聚苯胺纳米颗粒的表面覆盖度约为10~(10)cm~(-2)。这些纳米颗粒都为圆盘型,直径为200到600埃,高度为10到30埃。这些纳米颗粒的大小随聚合电量由5.7 μC/cm~2增加到19.3 μC/cm~2而增大。我们提出了一种通过分子设计在HOPG表面制备金属纳米粒子的新方法。第一步,根据Saveant的方法我们在HOPG表面修饰上一个4-氨基苯单层。第二步,通过配位相互作用Ag~+能在4-氨基功能化的HOPG表面形成单层。第三步,通过脉冲恒电位方法我们就能在4-氨基苯功能化的HOPG制备Ag纳米颗粒。电化学测量证明了在HOPG表面上Ag纳米颗粒的形成。STM图像显示通过这种方法制得的Ag纳米颗粒的大小十分均一且在HOPG表面上的分散度很高。这种新方法可被广泛地用来在碳表面制备各种金属纳米粒子。
Resumo:
合成三个系列的新型表面活性剂,制备了三个系列的聚乙烯接枝共聚物。第一系列的表面活性剂是将Tween8O、span80,聚氧乙烯肉桂醇醚,PEO(400),PEO(1000),PEO(2000)OCOC1’7H35和PEO(6000)-OCOC17H35引入双键而使其功能化,然后接枝到聚乙烯分子链上,表面活性剂的引入改变了聚乙烯的表面性能,使其亲水性增加。前三者为商品防雾滴剂,实验发现防雾滴剂的聚乙烯接枝共聚物膜的防雾滴性不如物理共混法制备的聚乙烯防雾滴膜的效果好。接枝聚乙烯共聚物LLDPE-g-PEO和LLDPE-g-PEO-sterate,由于结构差别,共聚物表面组成不同。前者随着支链长度的增加,支链柔性降低,共聚物表面氧的富集量趋于减少;而后者由于疏水基硬脂酸中碳链的存在,随着支链的增加,共聚物表面氧的富集量增加。LLDPE-g-PEO(400)和LLDPE-g-PEO(1000)的等温结晶速率都比空白聚乙烯的快。由于PEO与聚乙烯不相容,支链PEo在接枝共聚物中起异相成核剂的作用,使结晶速率加快。LLDPE-g-PEO(2000)-stearate的等温结晶速率与聚乙烯的接近,但比空白聚乙烯的略慢。这是由于支链末端硬脂酸碳链是柔性的疏水链,且与聚乙烯有较好的相容性,在本体聚乙烯非晶区中活动性较强,带动聚氧乙烯支链向相同的方向运动,使支链在聚乙烯中分散且伸展,对聚乙烯分子起惰性稀释剂的作用而导致结晶速率降低;但聚氧乙烯(2000)又具有结晶性,在本体聚乙烯中起异相成核剂的作用,使聚乙烯结晶速率加快,这两种作用消长的结果,使LLDPE-g-PEO(2000)-stearte接枝共聚物的结晶速率接近聚乙烯,但比聚乙烯的结晶速率略慢。LLDPE-g-PEO(6000)-stearate接枝共聚物的结晶速率比聚乙烯的快,这是由于聚氧乙烯(6000)的结晶性较强,活动性较强的硬脂酸基团很难使其伸展,其晶粒在本体聚乙烯中主要起异相成核剂的作用,导致其结晶速率比聚乙烯的快。为了弄清表面活性剂接枝到大分子链上的作用机理,特设计第二、第三系列的表面活性剂。第二系列的新型表面活性剂是I、II、III、IV和V,以及含有不饱和键的表面活性剂A-I、A-II和A-III。这些表面活性剂是以聚乙二醇、乙二醇、1,6-己二醇和1,10-癸二醇为主要的起始原料制得的。实验结果发现这些表面活性剂的表面张力随着疏水链长度的增加而增加。以A-I、A-II和A-II作为接枝单体,将其成功接枝到聚乙烯分子链上,从而改善了聚乙烯的表面性能。 由FTIR确定了其接枝率。由DSc对其等温结晶行为的研究发现:接枝链在本体聚合物中起异相成核剂的作用,加速了结晶过程,但没有改变聚乙烯晶格结构(WXA)。随着接枝链中的疏水链长度的增加,等温结晶速率加快。在低剪切速率时,空白聚乙烯具有牛顿流体的特性,而接枝聚乙烯表现出非牛顿流体行为。接枝聚合物在低剪切速率具有剪切变稠、高剪切速率时剪切变稀的现象。第三系列的新型表面活性剂是含氟和聚氧乙烯的特种表面活性剂:productIII(600-4600)。以FTIR和1HNMR表征其结构。以productIII(600-4600)为接枝单体,成功制得含氟接枝聚乙烯共聚物,亲水性表面活性剂的引入,同样改变了聚乙烯的表面性能。当PEO分子量较低时,含氟接枝聚乙烯共聚物的表面极性随着接枝链的分子量增加,极性增加,在ProductIII(1500)时,达到最大值,分子量继续增加,极性反而降低。这是由于支链结晶增加而影响分子链的迁移。含氟接枝聚乙烯共聚物的等温结晶速率比空白LLDPE的高,而且接枝共聚物的结晶速率随着支链分子量的增加而加快。这是由于含氟聚氧乙烯的接枝链在结晶体系中起成核剂的作用,使结晶过程加速。由于接枝率低,接枝链在接枝共聚物起异相成核剂的作用,虽然加速了结晶速率,但没有破坏聚乙烯晶格。
Resumo:
本论文研究了利用三孢布拉氏霉(Blakeslea trispora)发酵产β-胡萝卜素的培养条件。主要包括:发酵培养基的确定,发酵条件的优化。还考察了发酵菌丝体中β-胡萝卜素的提取方法及薄层层析等。 首先研究了培养基成分对三孢布拉氏霉发酵产β-胡萝卜素的影响。确立了玉米淀粉作为碳源,黄豆粉(热榨)作为氮源,棉籽油作为植物油的发酵培养基配方,其成分为:玉米淀粉 3%,黄豆粉(热榨) 2%,棉籽油 3%,KH2PO4 0.2%,MgSO4·7H2O 0.2%,维生素B1 0.002%,pH值6.0。 其次,通过比较不同的发酵影响因子,分别得到最适的条件:如三孢布拉氏霉正负菌接种比例为1.3:0.7,培养基pH值为7.0(灭菌后),发酵促进因子为Triton X-100。并采用正交试验法,确定其最佳发酵条件为正负菌接种比例1.3/0.7,发酵培养基pH为7.0,在培养基中添加表面活性基Triton X-100 0.08%。使该菌株产β-胡萝卜素的量达到0.73g/L,较初始发酵条件提高了3.3倍。 研究中还找到一个简便有效的对β-胡萝卜素的提取方法,选用盐酸-热处理法进行细胞破壁,并选用沸程为60~90℃的石油醚进行萃取。 用三孢布拉霉菌丝体内类胡萝卜索的石油醚提取液点样于硅胶G板,以丙酮:石油醚(5:95)为展开剂能将β-胡萝卜素与其它类胡萝卜索分离。该方法简便快速,并有一定实用价值。 The fermentative conditions of β-carotene by Blakeslea trispora have been investigated. These conditions include fermentation medium, the optimization of some fermentation factor. The extracting methods and the TLC of carotenoids were also researched. Firstly, the effects of composition of fermentation medium on the yield of β-carotene were studied. the results showed that the best fermentation medium was corn starch 3%,soybean power 2%,cottonseed oil 3%,KH2PO4 0.2%,MgSO4·7H2O 0.2%,vitamin B1 0.002%,pH value 6.0. Secondly, through compared some factors, such as different proportion of plus and minus strains, pH value, nonionic surfactants, respective best values have been obtained. The best proportion of plus and minus strains is 1.3:0.7, pH value of fermentation medium (sterilized) is 7.0, fermentation accelerant which acts as surfactants is Triton x-100. Farther on, the fermentative conditions were optimized through orthogonal experiment, the optimization showed that proportion of plus and minus strains is 1.3:0.7,pH value is 7.0, content of Triton x-100 is 0.08%. And the yield of β-carotene reached 0.73g/L, which was up to 3.3 times through the fermentation. In the extracting study, it has showed hydrochloric acid-heat treatment is a simple, convenient and effective extracting methods is which was used to destroy the cell wall, and the extracting organic solvent is petroleum ether whose boiling range is 60~90 ℃. In the TLC experiments, extracting contents in the petroleum ether were spotted in the silicagel plate, and the mixed liquor of acetone and petroleum ether (5:95) is developping agent, which can distinguish β-carotene from other carotenoids. It is a simple and quick technique.
Resumo:
Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at similar to 11 nm and then decreases for larger particles. Typical blocking effects were observed below similar to 225 K for all the prepared samples. The superparamagnetic blocking temperature (T-B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
Aluminum was incorporated into the mesoporous framework of ethane-silica by one-pot condensation of Al(OiPr)(3) with 1,2-bis(trimethoxysilyl)ethane using octadecyltrimethylammonium chloride as surfactant. Powder X-ray diffraction patterns, nitrogen sorption analysis, and TEM results reveal the formation of an ordered mesoporous material with uniform porosity. Al-27 MAS NMR confirms the incorporation of aluminum in the framework. The synthesized materials exhibit extremely high hydrothermal stability in boiling water (no obvious change of mesostructure and textural properties was observed even after refluxing in water for 100 h), which could be mainly contributed to the ethane-bridged mesoporous framework. The aluminum-containing mesoporous ethane-silicas are efficient catalysts for the alkylation of 2,4-di-tert-butylphenol by cinnamyl alcohol to yield a flavan.
Resumo:
Experimental data are presented to show the influence of the enhanced oil recovery system's components, alkali, surfactant, and polymer, on the demulsification and light transmittance of the water separated from the emulsions. Among which, the effects of surfactants, polyoxyethylene (10) alkylphenol ether (OP-10) and sodium petroleum sulfonate (CY-1) on emulsion stability, are the strongest of any component, the effects of polymer, hydrolytic polyacrylamide (HPAM) 3530S, on emulsion stability are the weakest. This research also suggests a possible emulsion minimization approach, which could be implemented in refineries utilizing microwave radiation. Compared with conventional heating, microwave radiation can effectively enhance the demulsification rate by an order of magnitude and increase the light transmittance of the water separated from the emulsions. The demulsification efficiency may reach 100% in a very short. time under microwave radiation.
Resumo:
With the objective of making calcium alginate gel beads with small and uniform size, membrane emulsification coupled with internal gelation was proposed. Spherical gel beads with mean size of about 50 mum, and even smaller ones in water, and with narrow size distribution were successfully obtained. Experimental studies focusing mainly on the effect of process parameters on bead properties were performed. The size of the beads was mainly dependent on the diameter of the membrane pores. High transmembrane pressure made for large gel beads with wide size distribution. Low sodium alginate concentration produced nonspherical beads, whereas a high concentration was unsuitable for the production of small beads with narrow distribution. Thus 1.5% w/v was enough. A high surfactant concentration favored the formation of small beads, but the adverse effect on mass transfer should be considered in this novel process. (C) 2002 Wiley Periodicals, Inc.