950 resultados para Multiple Factor Role
Resumo:
A simple multiple pulsewidth modulated (MPWM) ac chopper using power transistors for 3-¿ power control is discussed. 120° chopping period is used for main transistors so that the circuit can accommodate resistive and lagging or leading power factor loads. Only 1-¿ sensing is used for 3-¿ control. An alternate economical power and control schemes for 3-¿ MPWM ac choppers suitable only for resistive loads is also suggested. The experimental results for 12 choppings per cycle are given.
Resumo:
Several lines of evidence have implicated the catechol-O-methyltransferase (COMT) gene as a candidate for schizophrenia (SZ) susceptibility, not only because it encodes a key dopamine catabolic enzyme but also because it maps to the velocardiofacial syndrome region of chromosome 22q11 which has long been associated with SZ predisposition. The interest in COMT as a candidate SZ risk factor has led to numerous case-control and family-based studies, with the majority placing emphasis on examining a functional Val/Met polymorphism within this enzyme. Unfortunately, these studies have continually produced conflicting results. To assess the genetic contribution of other COMT variants to SZ susceptibility, we investigated three single-nucleotide polymorphisms (SNPs) (rs737865, rs4633, rs165599) in addition to the Val/Met variant (rs4680) in a highly selected sample of Australian Caucasian families containing 107 patients with SZ. The Val/Met and rs4633 variants showed nominally significant associations with SZ (P<0.05), although neither of the individual SNPs remained significant after adjusting for multiple testing (most significant P=0.1174). However, haplotype analyses showed strong evidence of an association; the most significant being the three-marker haplotype rs737865-rs4680-rs165599 (global P=0.0022), which spans more than 26 kb. Importantly, conditional analyses indicated the presence of two separate and interacting effects within this haplotype, irrespective of gender. In addition, our results indicate the Val/Met polymorphism is not disease-causing and is simply in strong linkage disequilibrium with a causative effect, which interacts with another as yet unidentified variant approximately 20 kb away. These results may help explain the inconsistent results reported on the Val/Met polymorphism and have important implications for future investigations into the role of COMT in SZ susceptibility.
Resumo:
In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests. Additionally, output from SNPSpD includes eigenvalues, principal-component coefficients, and factor "loadings" after varimax rotation, enabling the selection of a subset of SNPs that optimize the information in a genomic region.
Resumo:
Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.
Resumo:
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.
Resumo:
This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.
Resumo:
The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation of the complement and its activation, and activation of effector cells. In addition to this plethora of functions, antibodies are capable of expressing enzymatic activity. Antibodies with catalytic function are a result of the productive interplay between the highly evolved machinery of the immune system and the chemical framework used to induce them (antigens). Catalytic antibodies are immunoglobulins with an ability to catalyze the reactions involving the antigen for which they are specific. Catalytic immunoglobulins of the IgM and IgG isotypes have been detected in the serum of healthy donors. In addition, catalytic immunoglobulins of the IgA isotype have been detected in the milk of healthy mothers. Conversely, antigen-specific hydrolytic antibodies have been reported in a number of inflammatory, autoimmune, and neoplastic disorders. The pathophysiological occurrence and relevance of catalytic antibodies remains a debated issue. Through the description of the hydrolysis of coagulation factor VIII as model target antigen, we propose that catalytic antibodies directed to the coagulation factor VIII may play a beneficial or a deleterious role depending on the immuno-inflammatory condition under which they occur.
Resumo:
Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.
Resumo:
Objectives The current study had two aims. First, to develop a moral disengagement scale contextualized to underage drinking. Second, to investigate Bandura’s (1986) self-regulatory model within the context of underage drinking. Method Two different samples of students participated in the study. The first sample included 619 (362 females) adolescents (Mage = 15.3 years, SD = 1.09 years) and the second sample 636 (386 females) adolescents (Mage = 15.3 years, SD = 1.03 years). Students in the first sample completed the Underage Drinking Disengagement Scale (UDDS), and measures of engagement in underage drinking and heavy episodic drinking. Students in the second sample completed these measures as well as scales of general moral disengagement, personal standards and anticipatory guilt associated with underage drinking. Results For the UDDS, exploratory and confirmatory factor analyses verified a single factor structure. The UDDS was more strongly associated with engagement in underage drinking and heavy episodic drinking than a general measure of moral disengagement. A moderated mediation analysis revealed that adolescents who negatively evaluated underage drinking reported more anticipatory guilt, and more anticipatory guilt was associated with less engagement in underage drinking and less heavy episodic drinking. This relationship was weaker at high compared to low levels of underage drinking disengagement. Conclusions/Importance Understanding how adolescents self-regulate their drinking, and ways that such self-regulation may be deactivated or disengaged, may help identify those adolescents at increased risk of drinking underage and of engaging in heavy episodic drinking.
Resumo:
In northern latitudes, temperature is the key factor driving the temporal scales of biological activity, namely the length of the growing season and the seasonal efficiency of photosynthesis. The formation of atmospheric concentrations of biogenic volatile organic compounds (BVOCs) are linked to the intensity of biological activity. However, interdisciplinary knowledge of the role of temperature in the biological processes related to the annual cycle and photosynthesis and atmospheric chemistry is not fully understood. The aim of this study was to improve understanding of the role of temperature in these three interlinked areas: 1) onset of growing season, 2) photosynthetic efficiency and 3) BVOC air concentrations in a boreal forest. The results present a cross-section of the role of temperature on different spatial (southern northern boreal), structural (tree forest stand - forest) and temporal (day-season- year) scales. The fundamental status of the Thermal Time model in predicting the onset of spring recovery was confirmed. However, it was recommended that sequential models would be more appropriate tools when the onset of the growing season is estimated under a warmer climate. A similar type of relationship between photosynthetic efficiency and temperature history was found in both southern and northern boreal forest stands. This result draws attention to the critical question of the seasonal efficiency of coniferous species to emit organic compounds under a warmer climate. New knowledge about the temperature dependence of the concentrations of biogenic volatile organic compounds in a boreal forest stand was obtained. The seasonal progress and the inter-correlation of BVOC concentrations in ambient air indicated a link to biological activity. Temperature was found to be the main driving factor for the concentrations. However, in addition to temperature, other factors may play a significant role here, especially when the peak concentrations are studied. There is strong evidence that the spring recovery and phenological events of many plant species have already advanced in Europe. This study does not fully support this observation. In a boreal forest, changes in the annual cycle, especially the temperature requirement in winter, would have an impact on the atmospheric BVOC composition. According to this study, more joint phenological and BVOC field observations and laboratory experiments are still needed to improve these scenarios.
Resumo:
The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) and its family members neurturin (NRTN), artemin (ARTN) and persephin (PSPN) are growth factors, which are involved in the development, differentiation and maintenance of many neuron types. In addition, they function outside of the nervous system, e.g. in the development of kidney, testis and liver. GDNF family ligand (GFL) signalling happens through a tetrameric receptor complex, which includes two glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor (GFRα) molecules and two RET (rearranged during transfection) receptor tyrosine kinases. Each of the ligands binds preferentially one of the four GFRα receptors: GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The signal is then delivered by RET, which cannot bind the GFLs on its own, but can bind the GFL-GFRα complex. Under normal cellular conditions, RET is only phosphorylated on the cell surface after ligand binding. At least the GDNF-GFRα1 complex is believed to recruit RET to lipid rafts, where downstream signalling occurs. In general, GFRαs consist of three cysteine-rich domains, but all GFRα4s except for chicken GFRα4 lack domain 1 (D1). We characterised the biochemical and cell biological properties of mouse PSPN receptor GFRα4 and showed that it has a significantly weaker capacity than GFRα1 to recruit RET to the lipid rafts. In spite of that, it can phosphorylate RET in the presence of PSPN and contribute to neuronal differentiation and survival. Therefore, the recruitment of RET to the lipid rafts does not seem to be crucial for the biological activity of all GFRα receptors. Secondly, we demonstrated that GFRα1 D1 stabilises the GDNF-GFRα1 complex and thus affects the phosphorylation of RET and contributes to the biological activity. This may be important in physiological conditions, where the concentration of the ligand or the soluble GFRα1 receptor is low. Our results also suggest a role for D1 in heparin binding and, consequently, in the biodistribution of released GFRα1 or in the formation of the GFL-GFRα-RET complex. We also presented the crystallographic structure of GDNF in the complex with GFRα1 domains 2 and 3. The structure differs from the previously published ARTN-GFRα3 structure in three significant ways. The biochemical data verify the structure and reveal residues participating in the interactions between GFRα1 and GDNF, and preliminarily also between GFRα1 and RET and heparin. Finally, we showed that, the precursor of the oncogenic MEN 2B (multiple endocrine neoplasia type 2) form of RET gets phosphorylated already during its synthesis in the endoplasmic reticulum (ER). We also demonstrated that it associates with Src homology 2 domain-containing protein (SHC) and growth factor receptor-bound protein (GRB2) in the ER, and has the capacity to activate several downstream signalling molecules.
Resumo:
The inner ear originates from an ectodermal thickening called the otic placode. The otic placode invaginates and closes to an otic vesicle, the otocyst. The otocyst epithelium undergoes morphogenetic changes and cell differentiation, leading to the formation of the labyrinth-like mature inner ear. Epithelial-mesenchymal interactions control inner ear morphogenesis, but the modes and molecules are largely unresolved. The expressions of negative cell cycle regulators in the epithelium of the early-developing inner ear have also not been elucidated. The mature inner ear comprises the hearing (cochlea) and balance (vestibular) organs that contain the nonsensory and sensory cells. In mammals, the inner ear sensory cells, called hair cells, exit the cell cycle during embryogenesis and are mitotically quiescent during late-embryonic differentiation stages and postnatally. The mechanisms that maintain this hair cell quiescense are largely unresolved. In this work I examined 1) the epithelial-mesenchymal interactions involved in inner ear morphogenesis, 2) expression of negative cell cycle regulators in the epithelium of the early developing inner ear and 3) the molecular mechanisms that maintain the postmitotic state of inner ear sensory cells. We observed that during otocyst stages, epithelial fibroblast growth factor 9 (Fgf9) communicates with the surrounding mesenchyme, where its receptors are expressed. Fgf9 inactivation leads to reduced proliferation of the surrounding vestibular mesenchyme and to the absence of semicircular canals. Semicircular canal development is blocked, since fusion plates do not form. These results show that the mesenchyme directs fusion plate formation and give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of proliferation. We show that the members of the Cip/Kip family of CKIs (p21Cip1, p27Kip1 and p57Kip2) are expressed in the early-developing inner ear. Our expression data suggest that CKIs divide the otic epithelium into proliferative and nonproliferative compartments that may underlie shaping of the otocyst. At later stages, CKIs regulate proliferation of the vestibular appendages, and this may regulate their continual growth. In addition to restricting proliferation, CKIs may play a role in regional differentiation of various epithelial cells. Differentiating and adult inner ear hair cells are postmitotic and do not proliferate in response to serum or mitogenic growth factors. In our study, we show that this is the result of the activity of negative cell cycle regulators. Based on expression profiles, we first focused on the retinoblastoma (Rb) gene, which functions downstream of the CKIs. Analysis of the inner ear phenotype of Rb mutant mice show, that the retinoblastoma protein regulates the postmitotic state of hair cells. Rb inactivation leads to hyperplasia of vestibular and cochlear sensory epithelia that is a result of abnormal cell cycle entry of differentiated hair cells and of delayed cell cycle exit of the hair cell precursor cells. In addition, we show that p21Cip1 and p19Ink4d cooperate in maintaining the postmitotic state of postnatal auditory hair cells. Whereas inactivation of p19Ink4d alone leads to low-level S-phase entry (Chen et al., 2003) and p21Cip1 null mutant mice have a normal inner ear phenotype, codeletion of p19Ink4d and p21Cip1 triggers high-level S-phase entry of auditory hair cells during early postnatal life, which leads to supernumerary hair cells. The ectopic hair cells undergo apoptosis in all of the mutant mice studied, DNA damage being the immediate cause of this death. These findings demonstrate that the maintenance of the postmitotic state of hair cells is regulated by Rb and several CKIs, and that these cell cycle regulators are critical for the lifelong survival of hair cells. These data have implications for the future design of therapies to induce hair cell regrowth.
Resumo:
The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.