823 resultados para Multi-dimensional scaling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the energy current in a model of heat conduction, first considered in detail by Casher and Lebowitz. The model consists of a one-dimensional disordered harmonic chain of n i.i.d. random masses, connected to their nearest neighbors via identical springs, and coupled at the boundaries to Langevin heat baths, with respective temperatures T_1 and T_n. Let EJ_n be the steady-state energy current across the chain, averaged over the masses. We prove that EJ_n \sim (T_1 - T_n)n^{-3/2} in the limit n \to \infty, as has been conjectured by various authors over the time. The proof relies on a new explicit representation for the elements of the product of associated transfer matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An invariant imbedding method yields exact analytical results for the distribution of the phase theta (L) of the reflection amplitude and for low-order resistance moments (pn) for a disordered conductor of length L in the quasi-metallic regime L<scaling of resistance in one dimension is thus obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from numerical simulations using a ‘‘cell-dynamical system’’ to obtain solutions to the time-dependent Ginzburg-Landau equation for a scalar, two-dimensional (2D), (Φ2)2 model in the presence of a sinusoidal external magnetic field. Our results confirm a recent scaling law proposed by Rao, Krishnamurthy, and Pandit [Phys. Rev. B 42, 856 (1990)], and are also in excellent agreement with recent Monte Carlo simulations of hysteretic behavior of 2D Ising spins by Lo and Pelcovits [Phys. Rev. A 42, 7471 (1990)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic vibration in the Carbon Nanotubes (CNTs) gives rise to non-local interactions. In this paper, an expression for the non-local scaling parameter is derived as a function of the geometric and electronic properties of the rolled graphene sheet in single-walled CNTs. A self-consistent method is developed for the linearization of the problem of ultrasonic wave propagation in CNTs. We show that (i) the general three-dimensional elastic problem leads to a single non-local scaling parameter (e(0)), (ii) e(0) is almost constant irrespective of chirality of CNT in the case of longitudinal wave propagation, (iii) e(0) is a linear function of diameter of CNT for the case of torsional mode of wave propagation, (iv) e(0) in the case of coupled longitudinal-torsional modes of wave propagation, is a function which exponentially converges to that of axial mode at large diameters and to torsional mode at smaller diameters. These results are valid in the long-wavelength limit. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation,. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, sire in error. [:S1063-651X(99)04408-6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flexible robot arm can be modeled as an Euler-Bernoulli beam which are infinite degrees of freedom (DOF) system. Proper control is needed to track the desired motion of a robotic arm. The infinite number of DOF of beams are reduced to finite number for controller implementation, which brings in error (due to their distributed nature). Therefore, to represent reality better distributed parameter systems (DPS) should be controlled using the systems partial differential equation (PDE) directly. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a controller to suppress nonlinear vibration of a beam. The method used in this paper determines control forces directly from the PDE model of the system. The formulation has better practical significance, because it leads to a closed form solution of the controller (hence avoids computational issues).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice. We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation eta and eta + d eta, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice.We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation η and η + dη, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic, and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I (V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I (V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moist stratified turbulence is studied in a two-dimensional Boussinesq system influenced by condensation and evaporation. The problem is set in a periodic domain and employs simple evaporation and condensation schemes, wherein both the processes push parcels towards saturation. Numerical simulations demonstrate the emergence of a moist turbulent state consisting of ordered structures with a clear power-law type spectral scaling from initially spatially uncorrelated conditions. An asymptotic analysis in the limit of rapid condensation and strong stratification shows that, for initial conditions with enough water substance to saturate the domain, the equations support a straightforward state of moist balance characterized by a hydrostatic, saturated, vertically sheared horizontal flow (VSHF). For such initial conditions, by means of long time numerical simulations, the emergence of moist balance is verified. Specifically, starting from uncorrelated data, subsequent to the development of a moist turbulent state, the system experiences a rather abrupt transition to a regime which is close to saturation and dominated by a strong VSHF. On the other hand, initial conditions which do not have enough water substance to saturate the domain, do not attain moist balance. Rather, the system is observed to remain in a turbulent state and oscillates about moist balance. Even though balance is not achieved with these general initial conditions, the time scale of oscillation about moist balance is much larger than the imposed time scale of condensation and evaporation, thus indicating a distinct dominant slow component in the moist stratified two-dimensional turbulent system. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694805]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scaling laws are represented in power law form and can be utilized to extract the characteristic properties of a new phenomenon with the help of self-similar solutions. In this work, an attempt has been made to propose a scaling law analytically, for plain concrete when subjected to variable amplitude loading. Due to the application of overload on concrete structures, acceleration in the crack growth process takes place. A closed form expression has been developed to capture the acceleration in crack growth rate in conjunction with the principles of dimensional analysis and self-similarity. The proposed model accounts for parameters such as, the tensile strength, fracture toughness, overload effect and the structural size. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between the different parameters involved. The predicted results are compared with experimental crack growth data for variable amplitude loading and are found to capture the overload effect with sufficient accuracy. Through a sensitivity analysis, fracture toughness is found to be the most dominant parameter in accelerating the crack length due to application of overload.