932 resultados para Mildly Oxidized Ldl
Resumo:
Chromium nanowires of diameter 40-120 nm have been grown inside lithographically fabricated U-trench templates on oxidized silicon substrate by RF sputtering deposition technique. Under favourable experimental conditions, very long nanowires can be grown which depends on the trench length and surface homogeneity along the axis. Surface wettability control by the restricted supply of metal vapour is the key for the formation of nanowires. Diameter/depth ratio for the trench template is demonstrated to be crucial for the growth of nanowires.
Resumo:
A novel non-metal catalyzed oxidation of organic azides to nitriles under solvent-free conditions is presented employing catalytic amounts of KI, and DABCO in aq. TBHP at room temperature. This nonmetal catalyzed oxidation of azides provides good selectivity as double and triple bonds were not oxidized under the present reaction conditions.
Resumo:
Impairment of Akt phosphorylation, a critical survival signal, has been implicated in the degeneration of dopaminergic neurons in Parkinson's disease. However, the mechanism underlying pAkt loss is unclear. In the current study, we demonstrate pAkt loss in ventral midbrain of mice treated with dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), when compared to ventral midbrain of control mice treated with vehicle alone. Thiol residues of the critical cysteines in Akt are oxidized to a greater degree in mice treated with MPTP, which is reflected as a 40% loss of reduced Akt. Association of oxidatively modified Akt with the phosphatase PP2A, which can lead to enhanced dephosphorylation of pAkt, was significantly stronger after MPTP treatment. Maintaining the protein thiol homeostasis by thiol antioxidants prevented loss of reduced Akt, decreased association with PP2A, and maintained pAkt levels. Overexpression of glutaredoxin, a protein disulfide oxidoreductase, in human primary neurons helped sustain reduced state of Akt and abolished MPP+-mediated pAkt loss. We demonstrate for the first time the selective loss of Akt activity, in vivo, due to oxidative modification of Akt and provide mechanistic insight into oxidative stress-induced down-regulation of cell survival pathway in mouse midbrain following exposure to MPTP.-Durgadoss, L., Nidadavolu, P., Khader Valli, R., Saeed, U., Mishra, M., Seth, P., Ravindranath, R. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt. FASEB J. 26, 1473-1483 (2012). www.fasebj.org
Resumo:
J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved ``physiological functions'' are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient ``iron storage protein,'' thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.
Resumo:
Titanium-carbon (Ti-C) thin films of different compositions were prepared by a combination of pulsed DC (for Ti target) and normal DC (for graphite target) magnetron co-sputtering on oxidized silicon and fused quartz substrates. At 33.7 at.% of C content, pure hcp Ti transforms into fcc-TiC with a preferential orientation of (2 2 0) along with (1 1 1) and (2 0 0). A clear transformation in the preferential orientation from (2 2 0) to (1 1 1) has been observed when the C content was increased to 56 at.%. At 62.5 at.% of C, TiC precipitates in an amorphous carbon matrix whereas further increase in C leads to X-ray amorphous films. The cross-sectional scanning electron microscope images reveal that the films with low carbon content consists of columnar grains, whereas, randomly oriented grains are in an amorphous carbon matrix at higher carbon content. A dramatic variation was observed in the mechanical properties such as hardness, H, from 30 to 1 GPa and in modulus, E, from 255 to 25 GPa with varying carbon content in the films. Resistance to plastic deformation parameter was observed as 0.417 for films containing 62.5 at.% of C. Nanoscratch test reveals that the films are highly scratch resistant with a coefficient of friction ranging from 0.15 to 0.04. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Conducting polymer microstructures for enzymatic biosensors are developed by a facile electrochemical route. Horseradish peroxide (HRP)-entrapped polypyrrole (PPy) films with bowl-shaped microstructures are developed on stainless steel (SS 304) substrates by a single-step process. Potentiodynamic scanning/cyclic voltammetry is used for generation of PPy microstructures using electrogenerated oxygen bubbles stabilized by zwitterionic surfactant/buffer N-2-hydroxyethylpiperazine N-2-ethanesulfonic acid as soft templates. Scanning electron microscopic images reveal the bowl-shaped structures surrounded by cauliflower-like fractal PPy films and globular nanostructures. Raman spectroscopy reveals the oxidized nature of the film. Sensing properties of PPy-HRP films for hydrogen peroxide (H2O2) are demonstrated. Electrochemical characterization of the sensor films is done by linear sweep voltammetry (LSV) and amperometry. LSV results indicated the reduction of H2O2 and linearity in response of the sensing film. The amperometric biosensor has a performance comparable to those in the literature with advantages of hard-template free synthesis procedure and a satisfactory sensitivity value of 12.8 mu A/(cm(2) . mM) in the range of 1-10 mM H2O2.
Resumo:
Lattice oxygen of TiO2 is activated by the substitution of Pd ion in its lattice. Ti1-xPdxO2-x (x = 0.01-0.03) have been synthesized by solution combustion method crystallizing in anatase TiO2 structure. Pd is in +2 oxidation state and Ti is in +4 oxidation state in the catalyst. Pd is more ionic in TiO2 lattice compared to Pd in PdO. Oxygen storage capacity defined by ``amount of oxygen that is used reversibly to oxidize CO'' is as high as 5100 mu mol/g of Ti0.97Pd0.03O1.97. Oxygen is extracted by CO to CO2 in absence of feed oxygen even at room temperature which is more than 20 times compared to pure TiO2. Rate of CO oxidation is 2.75 mu mol g(-1) s(-1) at 60 degrees C over Ti0.97Pd0.03O1.97 and C2H2 gets oxidized to CO2 and H2O at room temperature. Catalyst is not poisoned on long time operation of the reactor. Such high catalytic activity is due to activated lattice oxygen created by the substitution of Pd ion as seen from first-principles density functional theory (DFT) calculations with 96 atom supercells of Ti32O64, Ti31Pd1O63, Ti30Pd2O62, and Ti29Pd3O61. The compounds crystallize in anatase TiO2 structure with Pd2+ ion in nearly square planar geometry and TiO6 octahedra are distorted by the creation of weakly bound oxygens. Structural analysis of Ti31Pd1O63 which is close to 3% Pd ion substituted TiO2 shows that oxygens associated with both Ti and Pd ions in the lattice show bond valence sum of 1.87, a low value characteristic of weak oxygen in the lattice compared to oxygens with valence 2 and above in the same lattice. Exact positions of activated oxygens have been identified in the lattice from DFT calculations.
Resumo:
The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (K-m and V-max) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.
Resumo:
The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.
Resumo:
Herein, we describe the synthesis and biomimetic activity of a series of N,N-disubstituted thiones and selones that contain an imidazole pharmacophore. The N,N-disubstituted thiones do not show any inhibitory activity towards LPO-catalyzed oxidation reactions, but their corresponding N,N-disubstituted selones exhibit inhibitory activity towards LPO-catalyzed oxidation reactions. Substituents on the N atom of the imidazole ring appear to have a significant effect on the inhibition of LPO-catalyzed oxidation and iodination reactions. Selones 16, 17, and 19, which contain methyl, ethyl, and benzyl substituents, exhibit similar inhibition activities towards LPO-catalyzed oxidation reactions with IC50 values of 24.4, 22.5, and 22.5M, respectively. However, their activities are almost three-fold lower than that of the commonly used anti-thyroid drug methimazole (MMI). In contrast, selone 21, which contains a NCH2CH2OH substituent, exhibits high inhibitory activity, with an IC50 value of 7.2M, which is similar to that of MMI. The inhibitory activity of these selones towards LPO-catalyzed oxidation/iodination reactions is due to their ability to decrease the concentrations of the co-substrates (H2O2 and I2), either by catalytically reducing H2O2 (anti-oxidant activity) or by forming stable charge-transfer complexes with oxidized iodide species. The inhibition of LPO-catalyzed oxidation/iodination reactions by N,N-disubstituted selones can be reversed by increasing the concentration of H2O2. Interestingly, all of the N,N-disubstituted selones exhibit high anti-oxidant activities and their glutathione peroxidase (GPx)-like activity is 4-12-fold higher than that of the well-known GPx-mimic ebselen. These experimental and theoretical studies suggest that the selones exist as zwitterions, in which the imidazole ring contains a positive charge and the selenium atom carries a large negative charge. Therefore, the selenium moieties of these selones possess highly nucleophilic character. The 77SeNMR chemical shifts for the selones show large upfield shift, thus confirming the zwitterionic structure in solution.
Resumo:
Direct current electrodeposition of Co-P alloy coatings were carried out using gluconate bath and they were characterized by employing techniques like XRD, FESEM, DSC and XPS. Broad XRD lines demonstrate the amorphous nature of Co-P coatings. Spherical and rough nodules are observed on the surface of coatings as seen from FESEM images. Three exothermic peaks around 290, 342 and 390 degrees C in DSC profiles of Co-P coatings could be attributed to the crystallization and formation of Co2P phase in the coatings. As-deposited coatings consist of Co metal and oxidized Co species as revealed by XPS studies. Bulk alloy P (P delta-) as well as oxidized P (P5+) are present on the surface of coatings. Concentrations of Co metal and P delta- increase with successive sputtering of the coating. Observed microhardness value is 1005 HK when Co-P coating obtained from 10 g L-1 NaH2PO2 is heated at 400 degrees C that is comparable with hard chromium coatings.
Resumo:
Background: Antiretroviral Therapy (ART) is currently the major therapeutic intervention in the treatment of AIDS. ART, however, is severely limited due to poor availability, high cytotoxicity, and enhanced metabolism and clearance of the drug molecules by the renal system. The use of nanocarriers encapsulating the antiretroviral drugs may provide a solution to the aforementioned problems. Importantly, the application of mildly immunogenic polymeric carrier confers the advantage of making the nanoparticles more visible to the immune system leading to their efficient uptake by the phagocytes. Methods: The saquinavir-loaded chitosan nanopartides were characterized by transmission electron microscopy and differential scanning calorimetry and analyzed for the encapsulation efficiency, swelling characteristics, particle size properties, and the zeta potential. Furthermore, cellular uptake of the chitosan nanocarriers was evaluated using confocal microscopy and Flow cytometry. The antiviral efficacy was quantified using viral infection of the target cells. Results: Using novel chitosan carriers loaded with saquinavir, a protease inhibitor, we demonstrate a drug encapsulation efficiency of 75% and cell targeting efficiency greater than 92%. As compared to the soluble drug control, the saquinavir-loaded chitosan carriers caused superior control of the viral proliferation as measured by using two different viral strains, NL4-3 and Indie-C1, and two different target T-cells, Jurkat and CEM-CCR5. Conclusion: Chitosan nanoparticles loaded with saquinavir were characterized and they demonstrated superior drug loading potential with greater cell targeting efficiency leading to efficient control of the viral proliferation in target T-cells. General significance: Our data ascertain the potential of chitosan nanocarriers as novel vehicles for HIV-1 therapeutics. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the naked-eye detection of cyanide ions in water with a visual color change from red to yellow ((max)=80nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for in-field experiments without requiring any sophisticated instruments.
Resumo:
This paper presents a specific kind of failure in ethylene cracking coils coated with anticoking film. It investigates a case in which the coils made of 35Cr 45Ni high temperature alloy failed within two years of operation. The damage occurred due to heavy oxidation in localized regions of the coil resulting in the formation of blisters, which eventually failed by cracking. The mechanism involved was determined by studying the oxidized samples under a scanning electron microscope with an energy dispersive system and is attributed to the presence of rare earth metals in the anti-coking film and inherent casting defects in the base alloy. The cerium present in the anti-coking film diffused preferentially to a defect site in the parent alloy thereby resulting in its segregation which further led to embrittlement. (C) 2014 Elsevier Ltd. All rights reserved.