986 resultados para Methods: laboratory: molecular
Resumo:
Cutaneous tuberculosis has re-emerged in the last 15 years together with the higher incidence of pulmonary tuberculosis and multidrug resistance. The choice for a single diagnostic tool among the many available today is a challenge. Our objective was to compare polymerase chain reaction (PCR) with other exams in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. PCR and a set of five different exams were performed in 32 patients (34 samples of paraffin-embedded tissue) evaluated for 3 years in a university hospital, considering the response to mycobacterial infection treatment as a positive case. PCR was the most sensitive (88%) and specific (83%) exam. Culture, immunohistochemistry and acid-fast bacilli were not in agreement with clinical response to treatment. Although PCR is a useful tool, careful clinical exam is still the gold standard for the evaluation and treatment of cutaneous tuberculosis and mycobacteria skin infection.
Resumo:
Background: GH insensitivity (GHI) syndrome caused by STAT5B mutations was recently reported, and it is characterized by extreme short stature and immune dysfunction. Treatment with recombinant human IGF1 (rhIGF1) is approved for patients with GHI, but the growth response to this therapy in patients with STAT5B mutations has not been reported. Objectives: To report the clinical features, molecular findings, and the short-term growth response to rhIGF1 therapy in patients with STAT5B mutation. Subjects and methods: Hormonal and immunological evaluations were performed in two male siblings with GHI associated with atopic eczema, interstitial lung disease, and thrombocytopenic purpura. STAT5B genes were directly sequenced. The younger sibling was treated with rhIGF1 at a dose of 110 mu g/kg BID. Results: Both siblings had laboratory findings compatible with GHI associated with hyperprolactinemia. Lymphopenia and reduced number of natural killer cells without immunoglobulin abnormalities were observed. STAT5B sequence revealed a homozygous frameshift mutation (p.L142fsX161) in both siblings. The younger sibling (9.9 years of age) was treated with rhIGF1 at appropriate dosage, and he did not present any significant change in his growth velocity (from 2.3 to 3.0 cm/year after 1.5 years of therapy). The presence of a chronic illness could possibly be responsible for the poor result of rhIGF1 treatment. Further studies in patients with STAT5B defects are necessary to define the response to rhIGF1 treatment in this disorder. Conclusion: GHI associated with immune dysfunction, especially interstitial lung disease, and hyperprolactinemia is strongly suggestive of a mutation in STAT5B in both sexes.
Resumo:
Initially, basic concepts are presented concerning the cell, genetic code and protein synthesis, and some techniques of molecular biology, such as PCR, PCR-RFLP, DNA sequencing, RT-PCR and immunoblotting. Protocols of nucleotides and of proteins extraction are supplied, such as salting out in peripheral blood allied to phenol-chloroform and trizol methods in skin samples. To proceed, commented examples of application of those techniques of molecular biology for the etiologic diagnosis and for research in tropical dermatoses, with emphasis to American tegumentary leishmaniasis and leprosy are presented.
Resumo:
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Resumo:
Objective: ACTH resistance syndromes are rare, autosomal, and genetically heterogeneous diseases that include familial glucocorticoid deficiency (FGD) and triple A syndrome. FGD has been shown to segregate with mutations in the gene coding for ACTH receptor (MC2R) or melanocortin 2 receptor accessory protein (MRAP), whereas mutations in the triple A syndrome (AAAS, Allgrove syndrome) gene have been found in segregation with triple A syndrome. We describe the clinical findings and molecular analysis of MC2R, MRAR and AAAS genes in five Brazilian patients with ACTH resistance syndrome. Design and methods: Genomic DNA from patients and their unaffected relatives was extracted from peripheral blood leucocytes and amplified by PCR, followed by automated sequencing. Functional analysis was carried out using Y6 cells expressing wild-type and mutant MC2R. Results: All five patients showed low cortisol and elevated plasma ACTH levels. One patient had achalasia and alacrima, besides the symptoms of adrenal insufficiency. The molecular analysis of FGD patients revealed a novel p.Gly116Val mutation in the MC2R gene in one patient and p.Met1Ile mutation in the MRAP gene in another patient. Expression of p.Glyll.6Val MC2R mutant in Y6 cells revealed that this variant failed to stimulate cAMP production. The analysis of the AAAS gene in the patient with triple A syndrome showed a novel g.782_783deITG deletion. The molecular analysis of DNA from other two patients showed no mutation in MC2R, MRAP or AAAS gene. Conclusions: In conclusion, the molecular basis of ACTH resistance syndrome is heterogeneous, segregating with genes coding for proteins involved with ACTH receptor signaling/expression or adrenal gland development and other unknown genes.
Resumo:
Bird sex determination using molecular methods has proved to be a valuable tool in different studies. Although it is possible to sex most birds by coupling the CHD assay with others available methods, no sex-determining gene like SRY in mammalians has been identified in birds. The male hypermethylated (MHM) region on the Z chromosome has been found to be hypermethylated in males and hypomethylated in females in birds of the order Galliformes. We analyzed the DNA from feathers of 50 adult chickens to verify the methylation pattern of the MHM region by PCR and the restriction enzyme HpaII (a method named MHM assay). The results, visualized in agarose gel, were compared with PCR amplification of the CHD-Z and CHD-W genes (polyacrylamide gel) and with the birds` phenotype. All males (25) showed hypermethylation of the MHM region, and all females (25) showed hypomethylation. The sexing by MHM assay was in according with phenotype and CHD sexing. To our knowledge, this is the first study that uses the MHM region for sexing birds. Although the real role of the MHM region in the sex determination is still unclear, this could be a universal marker for sexing birds and may be involved in sex determination by its influence on transcriptional processes. The MHM assay could be a good alternative for CHD assay in developmental studies.
Resumo:
Twenty-five extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli clinical isolates from Rio de Janeiro, Brazil were characterized by isoelectric focusing, PCR and sequencing of bla(ESBL) genes, plasmid-mediated quinolone resistance determinants, phylogenetic groups, replicon typing, pulsed-field electrophoresis, and multilocus sequencing typing. Twenty-three (92%) ESBL-producing E. coli isolates were positive for bla(CTX-M) genes, aac(6`)-lb-cr, and qnrB. Genetic relatedness of ESBL producers clustered seven (28%) CTX-M-15-producing isolates as sequence type (ST) 410, clonal complex (CC) 23, and two (8%) as clone O25-ST131. Our results illustrate the predominance of phylo-group A (52%), ST410 (CC 23) and CTX-M-15 among ESBL-producing E. coli isolates from hospitals in Rio de Janeiro.
Resumo:
The successful treatment of paediatric malignancies by multimodal therapy has improved outcomes for children with cancer, especially those with acute lymphoblastic leukaemia (ALL). Second malignant neoplasms, however, represent a serious complication after treatment. Depending on dosage, 2-12% of patients treated with topoisomerase II inhibitors and/or alkylating agents develop treatment-related acute myeloid leukaemia characterized by translocations at 11q23. Our goal was to study MLL rearrangements in peripheral lymphocytes using cytogenetic and molecular methods in order to evaluate the late effects of cancer therapy in patients previously treated for childhood ALL. Chromosomal rearrangements at 11q23 were analysed in cytogenetic preparations from 49 long-term ALL survivors and 49 control individuals. Patients were subdivided depending on the inclusion or omission of topoisomerase II inhibitors (VP-16 and/or VM-26) in their treatment protocol. The statistical analysis showed significant (P = 0.007) differences between the frequency of translocations observed for the groups of patients and controls. These differences were also significant (P = 0.006) when the groups of patients (independent of the inclusion of topoisomerase II inhibitors) and controls were compared (P = 0.006). The frequencies of extra signals, however, did not differ between groups of patients and controls. Several MLL translocations were detected and identified by inverse polymerase chain reaction, followed by cloning and sequencing. Thirty-five patients (81%) presented putative translocations; among those, 91% corresponded with t(4;11) (q21;q23), while the other 9% corresponded with t(11;X), t(8;11)(q23;q23) and t(11;16). Our results indicate an increase in MLL aberrations in childhood ALL survivors years after completion of therapy. The higher frequency in this cohort might be associated with therapy using anti-tumoural drugs, independent of the inclusion of topoisomerase II inhibitors. Even though the biological significance of these rearrangements needs further investigation, they demonstrate a degree of genome instability, indicating the relevance of cytogenetic and molecular studies during the follow-up of patients in complete clinical remission.
Resumo:
Purpose: To evaluate the influence of dentin moisture on bond strengths of an etch-and-rinse bonding agent to primary dentin clinically and in the laboratory. Methods: The sample consisted of two groups of 20 caries-free primary second molars: molars in exfoliation period (clinical group) and extracted molars (laboratory group). Class I cavities were prepared in all specimens leaving a flat dentin surface on the pulpal floor. A two-step etch-and-rinse adhesive was vigorously rubbed on either dry (n= 5) or wet demineralized dentin (n= 5) under clinical or laboratory conditions. After restorative procedures, the teeth from the clinical group were extracted after 20 minutes. All samples were processed and underwent microtensile bond strength test and silver nitrate uptake evaluation under scanning electron microscopy. Results: Statistically higher bond strength values were observed when the bonding was performed under laboratory conditions and on a wet demineralized dentin. Most of the failures were adhesive and mixed irrespective of the experimental condition. Silver nitrate uptake occurred in all groups irrespective of the experimental condition. Resin-dentin bond strengths produced in the laboratory in primary teeth may overestimate those produced under clinical circumstances. (Am J Dent 2011;24:221-225).
Resumo:
Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4 piD sigma (2) (where D is the population density and sigma (2) the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m(2)/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km(2) and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m(2)/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km(2) when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
The focus of rapid diagnosis of infectious diseases of children in the last decade has shifted from variations of the conventional laboratory techniques of antigen detection, microscopy and culture to that of molecular diagnosis of infectious agents. Pediatricians will need to be able to interpret the use, limitations and results of molecular diagnostic techniques as they are increasingly integrated into routine clinical microbiology laboratory protocols. PCR is the best known and most successfully implemented diagnostic molecular technology to date. It can detect specific infectious agents and determine their virulence and antimicrobial genotypes with greater speed, sensitivity and specificity than conventional microbiology methods. Inherent technical limitations of PCR are present, although they are reduced in laboratories that follow suitable validation and quality control procedures. Variations of PCR together with advances in nucleic acid amplification technology have broadened its diagnostic capabilities in clinical infectious disease to now rival and even surpass traditional methods in some situations. Automation of all components of PCR is now possible. The completion of the genome sequencing projects for significant microbial pathogens, in combination with PCR and DNA chip technology, will revolutionize the diagnosis and management of infectious diseases.
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
Molecular evolution has been considered to be essentially a stochastic process, little influenced by the pace of phenotypic change. This assumption was challenged by a study that demonstrated an association between rates of morphological and molecular change estimated for total-evidence phylogenies, a finding that led some researchers to challenge molecular date estimates of major evolutionary radiations. Here we show that Omland's (1997) result is probably due to methodological bias, particularly phylogenetic nonindependence, rather than being indicative of an underlying evolutionary phenomenon. We apply three new methods specifically designed to overcome phylogenetic bias to 13 published phylogenetic datasets for vertebrate taxa, each of which includes both morphological characters and DNA sequence data. We find no evidence of an association between rates of molecular and morphological rates of change.