865 resultados para Maximum power point tracking
Resumo:
Considering the measurement procedures recommended by the ICNIRP, this communication is a proposal for a measurement procedure based in the maximum peak values of equivalent plane wave power density. This procedure has been included in a project being developed in Leganés, Spain. The project plans to deploy a real time monitoring system for RF to provide the city with a useful tool to adapt the environmental EM conditions to the new regulations approved. A first stage consisting of 105 measurement points has been finished and all the values are under the threshold of the regulation.
Resumo:
In this paper, filter design methodology and application of GaN HEMTs for high efficiency Envelope Amplifier in RF transmitters are proposed. The main objectives of the filter design are generation of the envelope reference with the minimum possible distortion and high efficiency of the amplifier obtained by the optimum trade-off between conduction and switching losses. This optimum point was determined using power losses model for synchronous buck with sinusoidal output voltage and experimental results showed good correspondence with the model and verified the proposed methodology. On the other hand, comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the envelope amplifier, due to superior conductivity and switching characteristics. Experimental results verified benefits of GaN devices comparing to the appliance of Si switching devices with very good Figure Of Merit, for this particular application
Resumo:
Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER.
Resumo:
The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.
Resumo:
In general, a major challenge for the exploitation of renewable energies is to improve their efficiency. In electricity generation from the energy of ocean waves, not unlike other technologies, the converter must be optimized to make the energy harvesting economically feasible. This paper proposes a passive tuning control strategy of a point absorber in which the power captured is maximized by controlling the electromagnetic force of the generator with a resistance emulation approach. The proposed strategy consists of mapping the optimal values for regular waves and applying them to irregular waves. This strategy is tested in a wave energy converter in which the generator is connected to a boost rectifier converter whose controller is designed to emulate a resistance. The power electronics system implemented is validated by comparing its performance with the case in which the generator is directly connected to a resistive load. The simulation results show the effectiveness of the proposed strategy as the maximum captured power is concentrated around the optimal values previously calculated and with the same behavior for both excitations.
Resumo:
Even though the economic crisis proved harmful to the Russian economy and people's living standards, it has nonetheless failed to make the elite revise its policy. Despite some problems, the government has managed to sustain economic and political stability, thanks to the reserves it amassed in the times of prosperity, and to the propaganda campaign that protected it, above all Vladimir Putin. The crisis failed to force the elite to implement deeper structural and political reforms. Moreover, it has actually reinforced existing tendencies, such as state control over the economy and its oil-oriented character, the elite's economic expansion at the expense of private businesses, and the preservation of political power. Thus, the crisis has so far failed to dismantle Putinism, indeed quite the reverse - it has in fact contributed to its becoming 'set in stone'.
Resumo:
Includes bibliographical references.
Resumo:
Cover title.
Resumo:
A new control algorithm using parallel braking resistor (BR) and serial fault current limiter (FCL) for power system transient stability enhancement is presented in this paper. The proposed control algorithm can prevent transient instability during first swing by immediately taking away the transient energy gained in faulted period. It can also reduce generator oscillation time and efficiently make system back to the post-fault equilibrium. The algorithm is based on a new system energy function based method to choose optimal switching point. The parallel BR and serial FCL resistor can be switched at the calculated optimal point to get the best control result. This method allows optimum dissipation of the transient energy caused by disturbance so to make system back to equilibrium in minimum time. Case studies are given to verify the efficiency and effectiveness of this new control algorithm.
Resumo:
Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.
Resumo:
Using a well-established analytic nonlinear signal-to-noise ratio noise model we show that there are very simple, fibre independent, amplifier gains which minimize the total energy requirement for amplified systems. Power savings of over 50% are shown to be possible by choosing appropriate amplifier gain and output power.
Resumo:
This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Resumo:
Aided by the development of information technology, the balance of power in the market place is rapidly shifting from marketers towards consumers and nowhere is this more obvious than in the online environment (Denegri-Knott, Zwick, & Schroeder, 2006; Moynagh & Worsley, 2002; Newcomer, 2000; Samli, 2001). From the inception and continuous development of the Internet, consumers are becoming more empowered. They can choose what they want to click on the Internet, they can shop and transact payments, watch and download video, chat with others, be it friends or even total strangers. Especially in online communities, like-minded consumers share and exchange information, ideas and opinions. One form of online community is the online brand community, which gathers specific brand lovers. As with any social unit, people form different roles in the community and exert different effects on each other. Their interaction online can greatly influence the brand and marketers. A comprehensive understanding of the operation of this special group form is essential to advancing marketing thought and practice (Kozinets, 1999). While online communities have strongly shifted the balance of power from marketers to consumers, the current marketing literature is sparse on power theory (Merlo, Whitwell, & Lukas, 2004). Some studies have been conducted from an economic point of view (Smith, 1987), however their application to marketing has been limited. Denegri-Knott (2006) explored power based on the struggle between consumers and marketers online and identified consumer power formats such as control over the relationship, information, aggregation and participation. Her study has built a foundation for future power studies in the online environment. This research project bridges the limited marketing literature on power theory with the growing recognition of online communities among marketing academics and practitioners. Specifically, this study extends and redefines consumer power by exploring the concept of power in online brand communities, in order to better understand power structure and distribution in this context. This research investigates the applicability of the factors of consumer power identified by Denegri-Knott (2006) to the online brand community. In addition, by acknowledging the model proposed by McAlexander, Schouten, & Koenig (2002), which emphasized that community study should focus on the role of consumers and identifying multiple relationships among the community, this research further explores how member role changes will affect power relationships as well as consumer likings of the brand. As a further extension to the literature, this study also considers cultural differences and their effect on community member roles and power structure. Based on the study of Hofstede (1980), Australia and China were chosen as two distinct samples to represent differences in two cultural dimensions, namely individualism verses collectivism and high power distance verses low power distance. This contribution to the research also helps answer the research gap identified by Muñiz Jr & O'Guinn (2001), who pointed out the lack of cross cultural studies within the online brand community context. This research adopts a case study methodology to investigate the issues identified above. Case study is an appropriate research strategy to answer “how” and “why” questions of a contemporary phenomenon in real-life context (Yin, 2003). The online brand communities of “Haloforum.net” in Australia and “NGA.cn” in China were selected as two cases. In-depth interviews were used as the primary data collection method. As a result of the geographical dispersion and the preference of a certain number of participants, online synchronic interviews via MSN messenger were utilized along with the face-to-face interviews. As a supplementary approach, online observation was carried over two months, covering a two week period prior to the interviews and a six week period following the interviews. Triangulation techniques were used to strengthen the credibility and validity of the research findings (Yin, 2003). The findings of this research study suggest a new definition of power in an online brand community. This research also redefines the consumer power types and broadens the brand community model developed by McAlexander et al. (2002) in an online context by extending the various relationships between brand and members. This presents a more complete picture of how the perceived power relationships are structured in the online brand community. A new member role is discovered in the Australian online brand community in addition to the four member roles identified by Kozinets (1999), in contrast however, all four roles do not exist in the Chinese online brand community. The research proposes a model which links the defined power types and identified member roles. Furthermore, given the results of the cross-cultural comparison between Australia and China showed certain discrepancies, the research suggests that power studies in the online brand community should be country-specific. This research contributes to the body of knowledge on online consumer power, by applying it to the context of an online brand community, as well as considering factors such as cross cultural difference. Importantly, it provides insights for marketing practitioners on how to best leverage consumer power to serve brand objective in online brand communities. This, in turn, should lead to more cost effective and successful communication strategies. Finally, the study proposes future research directions. The research should be extended to communities of different sizes, to different extents of marketer control over the community, to the connection between online and offline activities within the brand community, and (given the cross-cultural findings) to different countries. In addition, a greater amount of research in this area is recommended to determine the generalizability of this study.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.