974 resultados para MITOCHONDRIAL RIBOSOMAL-PROTEINS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a computational strategy to identify the set of soluble proteins secreted into the extracellular environment of a cell. Within the protein sequences predominantly derived from the RIKEN representative transcript and protein set, we identified 2033 unique soluble proteins that are potentially secreted from the cell. These proteins contain a signal peptide required for entry into the secretory pathway and lack any transmembrane domains or intracellular localization signals. This class of proteins, which we have termed the mouse secretome, included >500 novel proteins and 92 proteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To help understand the mechanisms of gene rearrangement in the mitochondrial (mt) genomes of hemipteroid insects, we sequenced the mt genome of the plague thrips, Thrips imaginis (Thysanoptera). This genome is circular, 15,407 by long, and has many unusual features, including (1) rRNA genes inverted and distant from one another, (2) an extra gene for tRNA-Ser, (3) a tRNA-Val lacking a D-arm, (4) two pseudo-tRNA genes, (5) duplicate control regions, and (6) translocations and/or inversions of 24 of the 37 genes. The mechanism of rRNA gene transcription in T. imaginis may be different from that of other arthropods since the two rRNA genes have inverted and are distant from one another. Further, the rRNA genes are not adjacent or even close to either of the two control regions. Tandem duplication and deletion is a plausible model for the evolution of duplicate control regions and for the gene translocations, but intramitochondrial recombination may account for the gene inversions in T. imaginis. All the 18 genes between control regions #1 and #2 have translocated and/or inverted, whereas only six of the 20 genes outside this region have translocated and/or inverted. Moreover, the extra tRNA gene and the two pseudo-tRNA genes are either in this region or immediately adjacent to one of the control regions. These observations suggest that tandem duplication and deletion may be facilitated by the duplicate control regions and may have occurred a number of times in the lineage leading to T. imaginis. T. imaginis shares two novel gene boundaries with a lepidopsocid species from another order of hemipteroid insects, the Psocoptera. The evidence available suggests that these shared gene boundaries evolved by convergence and thus are not informative for the interordinal phylogeny of hemipteroid insects. We discuss the potential of hemipteroid insects as a model system for studies of the evolution of animal rut genomes and outline some fundamental questions that may be addressed with this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hernipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one 2 another. We found that the correlation was positive and statistically significant (R-2 = 0.73, P = 0.01; R-s = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GRIP domain is a targeting sequence found in a family of coiled-coil peripheral Golgi proteins. Previously we demonstrated that the GRIP domain of p230/golgin245 is specifically recruited to tubulovesicular structures of the traps-Golgi network (TGN). Here we have characterized two novel Golgi proteins with functional GRIP domains, designated GCC88 and GCC185. GCC88 cDNA encodes a protein of 88 kDa, and GCC185 cDNA encodes a protein of 185 kDa. Both molecules are brefeldin A-sensitive peripheral membrane proteins and are predicted to have extensive coiled-coil regions with the GRIP domain at the C terminus. By immunofluorescence and immunoelectron microscopy GCC88 and GCC185, and the GRIP protein golgin97, are all localized to the TGN of Hela cells. Overexpression of full-length GCC88 leads to the formation of large electron dense structures that extend from the traps-Golgi. These de novo structures contain GCC88 and co-stain for the TGN markers syntaxin 6 and TGN38 but not for alpha2,6-sialyltransferase, beta-COP, or cis-Golgi GM130. The formation of these abnormal structures requires the N-terminal domain of GCC88. TGN38, which recycles between the TGN and plasma membrane, was transported into and out of the GCC88 decorated structures. These data introduce two new GRIP domain proteins and implicate a role for GCC88 in the organization of a specific TGN subcompartment involved with membrane transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis-related (PR) protein superfamily is widely distributed in the animal, plant, and fungal kingdoms and is implicated in human brain tumor growth and plant pathogenesis. The precise biological activity of PR proteins, however, has remained elusive. Here we report the characterization, cloning and structural homology modeling of Tex31 from the venom duct of Conus textile. Tex31 was isolated to >95% purity by activity-guided fractionation using a para-nitroanilide substrate based on the putative cleavage site residues found in the propeptide precursor of conotoxin TxVIA. Tex31 requires four residues including a leucine N-terminal of the cleavage site for efficient substrate processing. The sequence of Tex31 was determined using two degenerate PCR primers designed from N-terminal and tryptic digest Edman sequences. A BLAST search revealed that Tex31 was a member of the PR protein superfamily and most closely related to the CRISP family of mammalian proteins that have a cysteine-rich C-terminal tail. A homology model constructed from two PR proteins revealed that the likely catalytic residues in Tex31 fall within a structurally conserved domain found in PR proteins. Thus, it is possible that other PR proteins may also be substrate-specific proteases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sco proteins are found in mitochondria and in a variety of oxidase positive bacteria. Although Sco is required for the formation of the Cu-A centre in a cytochrome oxidase of the aa(3) type, it was observed that oxidases with a Cu-A centre are not present in many bacteria that contain a Sco homologue. Two bacteria of this type are the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. The sco genes of N. gonorrhoeae strain 1291 and N. meningitidis strain MC58 were cloned, inactivated by inserting a kanamycin resistance cassette and used to make knockout mutants by allelic exchange. Both N. gonorrhoeae and N. meningitidis sco mutants were highly sensitive to oxidative killing by paraquat, indicating that Sco is involved in protection against oxidative stress in these bacteria. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently, glycosylation of proteins in prokaryotes was regarded as uncommon and thought to be limited to special cases such as S-layer proteins and some archeal outer membrane proteins. Now, there are an increasing number of reports of bacterial proteins that are glycosylated. Pilin of pathogenic Neisseria is one of the best characterised post-translation ally modified bacterial proteins, with four different types of modifications reported, including a novel glycosylation. Pilin monomers assemble to form pilus fibres, which are long protein filaments that protrude from the surface of bacterial cells and are key virulence factors. To aid in the investigation of these modifications, pure pilin is required. A number of pilin purification methods have been published, but none are appropriate for the routine purification of pilin from many different isolates. This study describes a novel, rapid, and simple method of pilin purification from Neisseria meningitidis C311#3, which facilitates the production of consistent quantities of pure, native pilin. A 6 x histidine tag was fused to the C-terminus of the pilin subunit structural gene, pilE, via homologous recombination placing the 6 x histidine-tagged allele in the chromosome of N. meningitidis C311#3. Pilin was purified under non-denaturing conditions via a two-step process using immobilised metal affinity chromatography (IMAC), followed by dye affinity chromatography. Analysis of the purified pilin confirmed that it retained both of the post-translational modifications examined. This novel approach may prove to be a generally applicable method for purification and analysis of post-translationally modified proteins in bacteria. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present results on the optimization of multilayered a-SiC:H heterostructures that can be used as optical transducers for fluorescent proteins detection using the Fluorescence Resonance Energy Transfer approach. Double structures composed by pin based aSiC:H cells are analyzed. The color discrimination is achieved by ac photocurrent measurement under different externally applied bias. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. An electrical model, supported by a numerical simulation gives insight into the device operation. Results show that the optimized a-SiC:H heterostructures act as voltage controlled optical filters in the visible spectrum. When the applied voltages are chosen appropriately those optical transducers can detect not only the selective excitation of specimen fluorophores, but also the subsequent weak acceptor fluorescent channel emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We carry out systematic Monte Carlo simulations of Go lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REDCAT: Natural Products and related Redox Catalysts: Basic Research and Applications in Medicine and Agriculture, Aveiro, 25-27 Novembro de 2012.