805 resultados para LEARNING OBJECTS REPOSITORIES - MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to demonstrate analytically how entrepreneurial action as learning relating to diversifying into technical clothing – i.e. a high-value manufacturing sector – can take place. This is particularly relevant to recent discussion and debate in academic and policy-making circles concerning the survival of the clothing manufacture industry in developed industrialised countries. Design/methodology/approach – Using situated learning theory (SLT) as the major analytical lens, this case study examines an episode of entrepreneurial action relating to diversification into a high-value manufacturing sector. It is considered on instrumentality grounds, revealing wider tendencies in the management of knowledge and capabilities requisite for effective entrepreneurial action of this kind. Findings – Boundary events, brokers, boundary objects, membership structures and inclusive participation that addresses power asymmetries are found to be crucial organisational design elements, enabling the development of inter- and intracommunal capacities. These together constitute a dynamic learning capability, which underpins entrepreneurial action, such as diversification into high-value manufacturing sectors. Originality/value – Through a refinement of SLT in the context of entrepreneurial action, the paper contributes to an advancement of a substantive theory of managing technological knowledge and capabilities for effective diversification into high-value manufacturing sectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK new-build housing sector is facing dual pressures to expand supply, whilst delivering against tougher planning and Building Regulation requirements; predominantly in the areas of sustainability. The sector is currently responding by significantly scaling up production and incorporating new technical solutions into new homes. This trajectory of up-scaling and technical innovation has been of research interest; but this research has primarily focus on the ‘upstream’ implications for house builders’ business models and standardised design templates. There has been little attention, though, to the potential ‘downstream’ implications of the ramping up of supply and the introduction of new technologies for build quality and defects. This paper contributes to our understanding of the ‘downstream’ implications through a synthesis of the current UK defect literature with respect to new-build housing. It is found that the prevailing emphasis in the literature is limited to the responsibility, pathology and statistical analysis of defects (and failures). The literature does not extend to how house builders individually and collectively, in practice, collect and learn from defects information. The paper concludes by describing an ongoing collaborative research programme with the National House Building Council (NHBC) to: (a) understand house builders’ localised defects analysis procedures, and their current knowledge feedback loops to inform risk management strategies; and, (b) building on this understanding, design and test action research interventions to develop new data capture, learning processes and systems to reduce targeted defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notion that learning can be enhanced when a teaching approach matches a learner’s learning style has been widely accepted in classroom settings since the latter represents a predictor of student’s attitude and preferences. As such, the traditional approach of ‘one-size-fits-all’ as may be applied to teaching delivery in Educational Hypermedia Systems (EHSs) has to be changed with an approach that responds to users’ needs by exploiting their individual differences. However, establishing and implementing reliable approaches for matching the teaching delivery and modalities to learning styles still represents an innovation challenge which has to be tackled. In this paper, seventy six studies are objectively analysed for several goals. In order to reveal the value of integrating learning styles in EHSs, different perspectives in this context are discussed. Identifying the most effective learning style models as incorporated within AEHSs. Investigating the effectiveness of different approaches for modelling students’ individual learning traits is another goal of this study. Thus, the paper highlights a number of theoretical and technical issues of LS-BAEHSs to serve as a comprehensive guidance for researchers who interest in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method for the recognition of complex actions. Our method combines automatic learning of simple actions and manual definition of complex actions in a single grammar. Contrary to the general trend in complex action recognition that consists in dividing recognition into two stages, our method performs recognition of simple and complex actions in a unified way. This is performed by encoding simple action HMMs within the stochastic grammar that models complex actions. This unified approach enables a more effective influence of the higher activity layers into the recognition of simple actions which leads to a substantial improvement in the classification of complex actions. We consider the recognition of complex actions based on person transits between areas in the scene. As input, our method receives crossings of tracks along a set of zones which are derived using unsupervised learning of the movement patterns of the objects in the scene. We evaluate our method on a large dataset showing normal, suspicious and threat behaviour on a parking lot. Experiments show an improvement of ~ 30% in the recognition of both high-level scenarios and their composing simple actions with respect to a two-stage approach. Experiments with synthetic noise simulating the most common tracking failures show that our method only experiences a limited decrease in performance when moderate amounts of noise are added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second language acquisition researchers often face particular challenges when attempting to generalize study findings to the wider learner population. For example, language learners constitute a heterogeneous group, and it is not always clear how a study’s findings may generalize to other individuals who may differ in terms of language background and proficiency, among many other factors. In this paper, we provide an overview of how mixed-effects models can be used to help overcome these and other issues in the field of second language acquisition. We provide an overview of the benefits of mixed-effects models and a practical example of how mixed-effects analyses can be conducted. Mixed-effects models provide second language researchers with a powerful statistical tool in the analysis of a variety of different types of data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work, has produced a wealth of data concerning the chemical evolution of the Galactic bulge, both for stars and nebulae. Present theoretical models generally adopt it limited range of such constraints, frequenfly using it single chemical element (usually iron), which is not enough to describe it unambiguously. In this work, we take into account contraints involving,9 Many chemical elements as possible, basically obtained from bulge nebulae and stars. Our main goal is to show that different scenarios can describe, at least partially the abundance distribution and several dishuice-independent correlations for these objects . Three classes of models were developed. The first is it one-zone, single-infall model, the. Second is it one-zone, double-infall model and the third is a multizone, double-infall model. We show that a one-zone model with it single infall episode is able to reproduce some of the observational data, but the best results tire achieved using it multizone, double-infall model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct and compare in this work a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and the differences among the models are explicitly shown and discussed. In particular, we present a model starting with a Gaussian ansatz for the density profile that provides a very accurate and almost complete analytical integration of the problem, modulo a small difference for one of the metric potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is the second most common neurodegenerative disorder (after Alzheimer's disease) and directly affects upto 5 million people worldwide. The stages (Hoehn and Yaar) of disease has been predicted by many methods which will be helpful for the doctors to give the dosage according to it. So these methods were brought up based on the data set which includes about seventy patients at nine clinics in Sweden. The purpose of the work is to analyze unsupervised technique with supervised neural network techniques in order to make sure the collected data sets are reliable to make decisions. The data which is available was preprocessed before calculating the features of it. One of the complex and efficient feature called wavelets has been calculated to present the data set to the network. The dimension of the final feature set has been reduced using principle component analysis. For unsupervised learning k-means gives the closer result around 76% while comparing with supervised techniques. Back propagation and J4 has been used as supervised model to classify the stages of Parkinson's disease where back propagation gives the variance percentage of 76-82%. The results of both these models have been analyzed. This proves that the data which are collected are reliable to predict the disease stages in Parkinson's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile assisted language learning (MALL) is a subarea of the growing field of mobile learning (mLearning) research which increasingly attracts the attention of scholars. This study provides a systematic review of MALL research within the specific area of second language acquisition during the period 2007 - 2012 in terms of research approaches, methods, theories and models, as well as results in the form of linguistic knowledge and skills. The findings show that studies of mobile technology use in different aspects of language learning support the hypothesis that mobile technology can enhance learners’ second language acquisition. However, most of the reviewed studies are experimental, small-scale, and conducted within a short period of time. There is also a lack of cumulative research; most theories and concepts are used only in one or a few papers. This raises the issue of the reliability of findings over time, across changing technologies, and in terms of scalability. In terms of gained linguistic knowledge and skills, attention is primarily on learners’ vocabulary acquisition, listening and speaking skills, and language acquisition in more general terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.