882 resultados para Input
Resumo:
In many real applications of Data Envelopment Analysis (DEA), the decision makers have to deteriorate some inputs and some outputs. This could be because of limitation of funds available. This paper proposes a new DEA-based approach to determine highest possible reduction in the concern input variables and lowest possible deterioration in the concern output variables without reducing the efficiency in any DMU. A numerical example is used to illustrate the problem. An application in banking sector with limitation of IT investment shows the usefulness of the proposed method. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
With business incubators deemed as a potent infrastructural element for entrepreneurship development, business incubation management practice and performance have received widespread attention. However, despite this surge of interest, scholars have questioned the extent to which business incubation delivers added value. Thus, there is a growing awareness among researchers, practitioners and policy makers of the need for more rigorous evaluation of the business incubation output performance. Aligned to this is an increasing demand for benchmarking business incubation input/process performance and highlighting best practice. This paper offers a business incubation assessment framework, which considers input/process and output performance domains with relevant indicators. This tool adds value on different levels. It has been developed in collaboration with practitioners and industry experts and therefore it would be relevant and useful to business incubation managers. Once a large enough database of completed questionnaires has been populated on an online platform managed by a coordinating mechanism, such as a business incubation membership association, business incubator managers can reflect on their practices by using this assessment framework to learn their relative position vis-à-vis their peers against each domain. This will enable them to align with best practice in this field. Beyond implications for business incubation management practice, this performance assessment framework would also be useful to researchers and policy makers concerned with business incubation management practice and impact. Future large-scale research could test for construct validity and reliability. Also, discriminant analysis could help link input and process indicators with output measures.
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Construction customers are persistently seeking to achieve sustainability and maximize value as sustainability has become a major consideration in the construction industry. In particular, it is essential to refurbish a whole house to achieve the sustainability agenda of 80% CO2 reduction by 2050 as the housing sector accounts for 28% of the total UK CO2 emission. However, whole house refurbishment seems to be challenging due to the highly fragmented nature of construction practice, which makes the integration of diverse information throughout the project lifecycle difficult. Consequently, Building Information Modeling (BIM) is becoming increasingly difficult to ignore in order to manage construction projects in a collaborative manner, although the current uptake of the housing sector is low at 25%. This research aims to investigate homeowners’ decision making factors for housing refurbishment projects and to provide a valuable dataset as an essential input to BIM for such projects. One-hundred and twelve homeowners and 39 construction professionals involved in UK housing refurbishment were surveyed. It was revealed that homeowners value initial cost more while construction professionals value thermal performance. The results supported that homeowners and professionals both considered the first priority to be roof refurbishment. This research revealed that BIM requires a proper BIM dataset and objects for housing refurbishment.
Resumo:
To carry out stability studies on more electric systems in which there is a preponderance of motor drive equipment, input admittance expressions are required for the individual pieces of equipment. In this paper the techniques of averaging and small-signal linearisation will be used to derive a simple input admittance model for a low voltage, trapezoidal back EMF, brushless, DC motor drive system.
Resumo:
A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.
Resumo:
This paper proposes a constrained nonparametric method of estimating an input distance function. A regression function is estimated via kernel methods without functional form assumptions. To guarantee that the estimated input distance function satisfies its properties, monotonicity constraints are imposed on the regression surface via the constraint weighted bootstrapping method borrowed from statistics literature. The first, second, and cross partial analytical derivatives of the estimated input distance function are derived, and thus the elasticities measuring input substitutability can be computed from them. The method is then applied to a cross-section of 3,249 Norwegian timber producers.
Resumo:
When export and import is connected with output of basic production, and criterion functional represents a final state of economy, the generalization of classical qualitative results of the main-line theory on a case of dynamic input-output balance optimization model for open economy is given.
Resumo:
In conical refraction, when a focused Gaussian beam passes along one of the optic axes of a biaxial crystal, it is transformed into a pair of concentric bright rings at the focal plane. We demonstrate both theoretically and experimentally that this transformation is hardly affected by partially blocking the Gaussian input beam with an obstacle. We analyze the influence of the size of the obstruction both on the transverse intensity pattern of the beam and on its state of polarization, which is shown to be very robust.
Resumo:
Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and pyrolysis process outputs was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, carbon, hydrogen, nitrogen, oxygen, and sulphur. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow rate of 5 L/min was provided for anaerobic condition. Rice husk, Sago biomass and Napier grass were used in the study to form different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to total produced bio-oil yield, aqueous phase bio-oil yield, organic phase bio-oil yield, higher heating value of organic phase bio-oil, and organic bio-oil compounds was conducted. The results demonstrate that process performance is associated with feedstock properties, which can be used as a platform to access the process feedstock element acceptance range to estimate the process outputs. Ultimately, this work evaluated the element acceptance range for proposed biomass pyrolysis technology to integrate alternative biomass species feedstock based on element characteristic to enhance the flexibility of feedstock selection.
Resumo:
Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.
Resumo:
The Leontief input-output model is widely used to determine the ecological footprint of consumption in a region or a country. It is able to capture spillover environmental effects along the supply change, thus its popularity is increasing in ecology related economic research. These studies are static and the dynamic investigations are neglected. The dynamic Leontief model makes it possible to involve the capital and inventory investment in the footprint calculation that projects future growth of GDP and environmental impacts. We show a new calculation method to determine the effect of capital accumulation on ecological footprint. Keywords: Dynamic Leontief model, Dynamic ecological footprint, Environmental management, Allocation method