Optimal design for correlated processes with input-dependent noise


Autoria(s): Boukouvalas, A.; Cornford, D.; Stehlík, M.
Data(s)

01/03/2014

Resumo

Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.

Formato

application/pdf

Identificador

http://eprints.aston.ac.uk/23586/1/Optimal_design_for_correlated_processes_with_input_dependent_noise.pdf

Boukouvalas, A.; Cornford, D. and Stehlík, M. (2014). Optimal design for correlated processes with input-dependent noise. Computational Statistics and Data Analysis, 71 , pp. 1088-1102.

Relação

http://eprints.aston.ac.uk/23586/

Tipo

Article

PeerReviewed