937 resultados para IMMOBILIZED HORSERADISH-PEROXIDASE
Resumo:
Sediment samples from the Cariaco Trench (DSDP Leg 15) and the Walvis Ridge (DSDP Leg 75) ranging in age from Holocene to Upper Miocene (approximately 8 million years BP) and in depth from 5 to 258 m were extracted with basic sodium pyrophosphate and the extract analyzed for enzymic activity. Since no dehydrogenase, alkaline phosphatase or esterase activity was found, it is estimated from these data that the maximum bacterial population does not exceed 1000 cells per gram dry sediment. Peroxidase activity was, however, found in most samples: this showed marked dependence on the humic substance concentration (expressed as percent of the organic carbon content) and increased with depth at a rate of 33 units per meter. To explain this observation, we favor an hypothesis based on the presence of active humic-enzyme association. The humic substances absorb and stabilize peroxidase which is liberated throughout the sediment column by lysis of cells. The association of the enzyme with the humic substances protects it from biodegradation and denaturation. This hypothesis agrees with laboratory experiments which show the enhanced stability of humic-enzyme complexes towards degradation by biological, chemical and thermal effects.
Resumo:
Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.
Resumo:
Numerous studies have established that polyvalency is a critical feature of cell surface carbohydrate recognition. Nevertheless, carbohydrate–protein interactions are typically evaluated by using assays that focus on the behavior of monovalent carbohydrate ligands in solution. It has generally been assumed that the relative affinities of monovalent carbohydrate ligands in solution correlate with their polyvalent avidities. In this paper we show that carbohydrate ligands synthesized directly on TentaGel beads interact with carbohydrate-binding proteins in a polyvalent manner. The carbohydrate-derivatized beads can, therefore, be used as model systems for cell surfaces to evaluate polyvalent carbohydrate–protein interactions. By using a combinatorial approach to synthesize solid-phase libraries of polyvalent carbohydrates, one can rapidly address key issues in the area of cell surface carbohydrate recognition. For example, studies reported herein demonstrate that there is an unanticipated degree of specificity in recognition processes involving polyvalent carbohydrates. However, the correlation between polyvalent avidities and solution affinities is poor. Apparently, the presentation of carbohydrates on the polymer surface has a profound influence on the interaction of the ligand with the protein receptor. These findings have implications for how carbohydrates function as recognition signals in nature, as well as for how polyvalent carbohydrate–protein interactions should be studied.
Resumo:
Random mutagenesis and screening for enzymatic activity has been used to engineer horse heart myoglobin to enhance its intrinsic peroxidase activity. A chemically synthesized gene encoding horse heart myoglobin was subjected to successive cycles of PCR random mutagenesis. The mutated myoglobin gene was expressed in Escherichia coli LE392, and the variants were screened for peroxidase activity with a plate assay. Four cycles of mutagenesis and screening produced a series of single, double, triple, and quadruple variants with enhanced peroxidase activity. Steady-state kinetics analysis demonstrated that the quadruple variant T39I/K45D/F46L/I107F exhibits peroxidase activity significantly greater than that of the wild-type protein with k1 (for H2O2 oxidation of metmyoglobin) of 1.34 × 104 M−1 s−1 (≈25-fold that of wild-type myoglobin) and k3 [for reducing the substrate (2, 2′-azino-di-(3-ethyl)benzthiazoline-6-sulfonic acid] of 1.4 × 106 M−1 s−1 (1.6-fold that of wild-type myoglobin). Thermal stability of these variants as measured with circular dichroism spectroscopy demonstrated that the Tm of the quadruple variant is decreased only slightly compared with wild-type (74.1°C vs. 76.5°C). The rate constants for binding of dioxygen exhibited by the quadruple variant are identical to the those observed for wild-type myoglobin (kon, 22.2 × 10−6 M−1 s−1 vs. 22.3 × 10−6 M−1 s−1; koff, 24.3 s−1 vs. 24.2 s−1; KO2, 0.91 × 10−6 M−1 vs. 0.92 × 10−6 M−1). The affinity of the quadruple variant for CO is increased slightly (kon, 0.90 × 10−6 M−1s−1 vs. 0.51 × 10−6 M−1s−1; koff, 5.08 s−1 vs. 3.51 s−1; KCO, 1.77 × 10−7 M−1 vs. 1.45 × 10−7 M−1). All four substitutions are in the heme pocket and within 5 Å of the heme group.
Resumo:
Binding properties of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium against a synthetic lignin (dehydrogenated polymerizate, DHP) were studied with a resonant mirror biosensor. Among several ligninolytic enzymes, only LiP specifically binds to DHP. Kinetic analysis revealed that the binding was reversible, and that the dissociation equilibrium constant was 330 μM. The LiP–DHP interaction was controlled by the ionization group with a pKa of 5.3, strongly suggesting that a specific amino acid residue plays a role in lignin binding. A one-electron transfer from DHP to oxidized intermediates LiP compounds I and II (LiPI and LiPII) was characterized by using a stopped-flow technique, showing that binding interactions of DHP with LiPI and LiPII led to saturation kinetics. The dissociation equilibrium constants for LiPI–DHP and LiPII–DHP interactions were calculated to be 350 and 250 μM, and the first-order rate constants for electron transfer from DHP to LiPI and to LiPII were calculated to be 46 and 16 s−1, respectively. These kinetic and spectral studies strongly suggest that LiP is capable of oxidizing lignin directly at the protein surface by a long-range electron transfer process. A close look at the crystal structure suggested that LiP possesses His-239 as a possible lignin-binding site on the surface, which is linked to Asp-238. This Asp residue is hydrogen-bonded to the proximal His-176. This His–Asp⋅⋅⋅proximal-His motif would be a possible electron transfer route to oxidize polymeric lignin.
Resumo:
Efficient and safe heparin anticoagulation has remained a problem for continuous renal replacement therapies and intermittent hemodialysis for patients with acute renal failure. To make heparin therapy safer for the patient with acute renal failure at high risk of bleeding, we have proposed regional heparinization of the circuit via an immobilized heparinase I filter. This study tested a device based on Taylor-Couette flow and simultaneous separation/reaction for efficacy and safety of heparin removal in a sheep model. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. The device, referred to as a vortex flow plasmapheretic reactor, consisted of two concentric cylinders, a priming volume of 45 ml, a microporous membrane for plasma separation, and an outer compartment where the immobilized heparinase I was fluidized separately from the blood cells. Manual white cell and platelet counts, hematocrit, total protein, and fibrinogen assays were performed. Heparin levels were indirectly measured via whole-blood recalcification times (WBRTs). The vortex flow plasmapheretic reactor maintained significantly higher heparin levels in the extracorporeal circuit than in the sheep (device inlet WBRTs were 1.5 times the device outlet WBRTs) with no hemolysis. The reactor treatment did not effect any physiologically significant changes in complete blood cell counts, platelets, and protein levels for up to 2 hr of operation. Furthermore, gross necropsy and histopathology did not show any significant abnormalities in the kidney, liver, heart, brain, and spleen.
Resumo:
Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation.
Resumo:
A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.
Resumo:
Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.
Resumo:
Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.
Resumo:
Cultured cells of rose (Rosa damascena) treated with an elicitor derived from Phytophthora spp. and suspension-cultured cells of French bean (Phaseolus vulgaris) treated with an elicitor derived from the cell walls of Colletotrichum lindemuthianum both produced H2O2. It has been hypothesized that in rose cells H2O2 is produced by a plasma membrane NAD(P)H oxidase (superoxide synthase), whereas in bean cells H2O2 is derived directly from cell wall peroxidases following extracellular alkalinization and the appearance of a reductant. In the rose/Phytophthora spp. system treated with N,N-diethyldithiocarbamate, superoxide was detected by a N,N′-dimethyl-9,9′-biacridium dinitrate-dependent chemiluminescence; in contrast, in the bean/C. lindemuthianum system, no superoxide was detected, with or without N,N-diethyldithiocarbamate. When rose cells were washed free of medium (containing cell wall peroxidase) and then treated with Phytophthora spp. elicitor, they accumulated a higher maximum concentration of H2O2 than when treated without the washing procedure. In contrast, a washing treatment reduced the H2O2 accumulated by French bean cells treated with C. lindemuthianum elicitor. Rose cells produced reductant capable of stimulating horseradish (Armoracia lapathifolia) peroxidase to form H2O2 but did not have a peroxidase capable of forming H2O2 in the presence of reductant. Rose and French bean cells thus appear to be responding by different mechanisms to generate the oxidative burst.
Resumo:
Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and downstream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.
Resumo:
In recent years, it has become apparent that salicylic acid (SA) plays an important role in plant defense responses to pathogen attack. Previous studies have suggested that one of SA's mechanisms of action is the inhibition of catalase, resulting in elevated levels of H2O2, which activate defense-related genes. Here we demonstrate that SA also inhibits ascorbate peroxoidase (APX), the other key enzyme for scavenging H2O2. The synthetic inducer of defense responses, 2,6-dichloroisonicotinic acid (INA), was also found to be an effective inhibitor of APX. In the presence of 750 microM ascorbic acid (AsA), substrate-dependent IC50 values of 78 microM and 95 microM were obtained for SA and INA, respectively. Furthermore, the ability of SA analogues to block APX activity correlated with their ability to induce defense-related genes in tobacco and enhance resistance to tobacco mosaic virus. Inhibition of APX by SA appears to be reversible, thus differing from the time-dependent, irreversible inactivation by suicide substrates such as p-aminophenol. In contrast to APX, the guaiacol-utilizing peroxidases, which participate in the synthesis and crosslinking of cell wall components as part of the defense response, are not inhibited by SA or INA. The inhibition of both catalase and APX, but not guaiacol peroxidases, supports the hypothesis that SA-induced defense responses are mediated, in part, through elevated H2O2 levels or coupled perturbations of the cellular redox state.