964 resultados para Growth Mechanisms
Resumo:
Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na(+), K(+) and Ca(2+) channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.Fundamento: Distúrbios da motilidade do intestino proximal no infarto agudo do miocárdio podem desencadear sintomas digestivos como náuseas e vômitos. O infarto do miocárdio ocasiona retardo do esvaziamento gástrico (EG) de líquido em ratos. Objetivo: Investigar se existe a influência do nervo vago (VGX), adrenoreceptores α-1, receptores GABAB do sistema nervoso central e participação do núcleo paraventricular (NPV) do hipotálamo no esvaziamento gástrico (EG) e complacência gástrica (CG) em ratos infartados. Métodos: Ratos Wistar (n = 8-15) foram divididos em: grupo infarto (INF), sham (SH) e subdivididos. O infarto foi realizado por ligadura da artéria coronária descendente anterior. A complacência gástrica foi estimada com curvas pressão-volume. Realizada vagotomia por secção dos ramos dorsal e ventral. Para verificar a ação dos receptores GABAB foi injetado baclofeno por via intra ventrículo-cerebral. Simpatectomia química foi realizada com prazosina intravenosa (iv), e na lesão do núcleo paraventricular do hipotálamo foi utilizada corrente elétrica de 1mA/10s, com esvaziamento gástrico determinado por medição da retenção gástrica (% RG) de uma refeição salina. Resultados: Não houve diferença significativa na CG. A vagotomia (VGX) reduziu significativamente a %RG; no grupo INF, o tratamento intra ventrículo-cerebral (ivc) com baclofeno reduziu significativamente a % RG; não houve conclusivamente envolvimento dos receptores GABAB em retardar o EG; o tratamento intravenoso com prazosina reduziu significativamente a %RG no grupo INF. A lesão do NPV aboliu o efeito do infarto do miocárdio no EG. Conclusão: O nervo vago, receptores α-adrenérgicos e núcleo paraventricular estão envolvidos no retardo do esvaziamento gástrico no infarto agudo do miocárdio em ratos.
Resumo:
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.
Resumo:
Solid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release.
Resumo:
Squamous cell carcinoma is the most common neoplasm of the larynx, and its evolution depends on tumor staging. Vascular endothelial growth factor is a marker of angiogenesis, and its expression may be related to increased tumor aggressiveness, as evidenced by the presence of cervical lymphatic metastases. To evaluate the expression of the vascular endothelial growth factor marker in non-glottic advanced squamous cell carcinoma of the larynx (T3/T4) and correlate it with the presence of cervical lymph node metastases. Retrospective clinical study and immunohistochemical analysis of vascular endothelial growth factor through the German scale of immunoreactivity in products of non-glottic squamous cell carcinomas. This study analyzed 15 cases of advanced non-glottic laryngeal tumors (T3/T4), four of which exhibited cervical lymphatic metastases. There was no correlation between vascular endothelial growth factor expression and the presence of cervical metastases. Although vascular endothelial growth factor was expressed in a few cases, there was no correlation with the spread of cervical lymph metastases.
Resumo:
Obesity is increasing worldwide and is triggered, at least in part, by enhanced caloric intake. Food intake is regulated by a complex mechanism involving the hypothalamus and hindbrain circuitries. However, evidences have showing that reward systems are also important in regulating feeding behavior. In this context, amygdala is considered a key extra-hypothalamic area regulating feeding behavior in human beings and rodents. This review focuses on the regulation of food intake by amygdala and the mechanisms of insulin resistance in this brain area. Similar to the hypothalamus the anorexigenic effect of insulin is mediated via PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway in the amygdala. Insulin decreases NPY (neuropeptide Y) and increases oxytocin mRNA levels in the amygdala. High fat diet and saturated fatty acids induce inflammation, ER (endoplasmic reticulum) stress and the activation of serine kinases such as PKCθ (protein kinase C theta), JNK (c-Jun N-terminal kinase) and IKKβ (inhibitor of nuclear factor kappa-B kinase beta) in the amygdala, which have an important role in insulin resistance in this brain region. Overexpressed PKCθ in the CeA (central nucleus of amygdala) of rats increases weight gain, food intake, insulin resistance and hepatic triglycerides content. The inhibition of ER stress ameliorates insulin action/signaling, increases oxytocin and decreases NPY gene expression in the amygdala of high fat feeding rodents. Those data suggest that PKCθ and ER stress are main mechanisms of insulin resistance in the amygdala of obese rats and play an important role regulating feeding behavior.
Resumo:
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the SELF-PRUNING (SP) gene family, which also includes the florigen gene SINGLE FLOWER TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix×ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Resumo:
This study aims to assess the clinical and physiological effects of Roux-en-Y gastric bypass (RYGBP) on type 2 diabetes associated with mild obesity (body mass index [BMI] 30-34.9 kg/m(2)) over 24 months postsurgery. In this prospective trial, 36 mildly obese subjects (19 males) with type 2 diabetes using oral antidiabetic drugs with (n = 24) or without insulin (n = 12) underwent RYGBP. Follow-up was conducted at baseline and 3, 6, 12, and 24 months postsurgery. The following endpoints were considered: changes in HbA1c, fasting glucose and insulin, antidiabetic therapy, BMI, oral glucose insulin sensitivity [OGIS, from meal tolerance test (MTT)], beta-cell secretory function [ΔCP(0-30)/ΔGlu(0-30) (ΔC-peptide/Δglucose ratio, MTT 0-30 min), disposition index (DI = OGIS [Symbol: see text] ΔCP(0-30)/ΔGlu(0-30)], glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) [incremental area under the curve (AUCi)], adiponectin, C-reactive protein, and lipids. All subjects achieved normal-to-overweight BMI after 3 months. Over 24 months, 31/36 (86 %) subjects presented HbA1c <7 % [complete and partial remission of diabetes in 9/36 (22 %) and 1/36 (3 %), respectively]. Since 3 months postsurgery, improvements were observed in OGIS [290 (174) to 373 (77) ml/min/m(2), P = 0.009], ΔCP(0-30)/ΔGlu(0-30) [0.24 (0.19) to 0.52 (0.34) ng/mg, P = 0.001], DI [7.16 (8.53) to 19.8 (15.4) (ng/mg) (ml/min/m(2)), P = 0.001], GLP-1 AUCi [0.56 (0.64) to 3.97 (3.86) ng/dl [Symbol: see text] 10 min [Symbol: see text] 103, P = 0.000], and GIP AUCi [30.2 (12.6) to 27.0 (20.2) ng/dl [Symbol: see text] 10 min [Symbol: see text] 103, P = 0.004]. At baseline and after 12 months, subjects with diabetes nonremission had longer diabetes duration, higher HbA1c, lower beta-cell secretory function, and higher first 30-min GIP AUCi, compared with those with remission. RYGBP improves the glucose metabolism in subjects with type 2 diabetes and mild obesity. This effect is associated with improvement of insulin sensitivity, beta-cell secretory function, and incretin secretion.
Resumo:
Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit sets in hand-pollination experiments were more than twice those under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these synchronopatric species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinaria to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to the knowledge of orchids. In E. crinipes, pollinaria attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around the bill. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae. This article is protected by copyright. All rights reserved.
Resumo:
The aim of this study was to evaluate by clinical and laboratory parameters how cystic fibrosis (CF) affects growth and nutritional status of children who were undergoing CF treatment but did not receive newborn screening. A historical cohort study of 52 CF patients younger than 10 years of age were followed in a reference center in Campinas, Southeast Brazil. Anthropometric measurements were abstracted from medical records until March/2010, when neonatal screening program was implemented. Between September/2009 and March/2010, parental height of the 52 CF patients were also measured. Regarding nutritional status, four patients had Z-scores ≤ -2 for height/age (H/A) and body mass index/age (BMI/A). The following variables were associated with improved H/A ratio: fewer hospitalizations, longer time from first appointment to diagnosis, longer time from birth to diagnosis and later onset of respiratory disease. Forced vital capacity [FVC(%)], forced expiratory flow between 25-75% of FVC [FEF25-75(%)], forced expiratory volume in the first second [FEV1(%)], gestational age, birth weight and early respiratory symptoms were associated with IMC/A. Greater number of hospitalizations, diagnosis delay and early onset of respiratory disease had a negative impact on growth. Lower spirometric values, lower gestational age, lower birth weight, and early onset of respiratory symptoms had negative impact on nutritional status. Malnutrition was observed in 7.7% of cases, but 23% of children had nutritional risk.
Resumo:
6
Resumo:
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.
Resumo:
ANKHD1 (Ankyrin repeat and KH domain-containing protein 1) is highly expressed and plays an important role in the proliferation and cell cycle progression of multiple myeloma (MM) cells. ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irrespective of the TP53 mutational status of MM cell lines. The present study was aimed to investigate the role of ANKHD1 in MM in vitro clonogenicity and in vivo tumourigenicity, as well as the role of ANKHD1 in p21 transcriptional regulation. ANKHD1 silencing in MM cells resulted in significantly low no. of colonies formed and in slow migration as compared to control cells (p < 0.05). Furthermore, in xenograft MM mice models, tumour growth was visibly suppressed in mice injected with ANKHD1 silenced cells compared to the control group. There was a significant decrease in tumour volume (p = 0.006) as well as in weight (p = 0.02) in the group injected with silenced cells compared to those of the control group. Co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assays confirmed the interaction between p21 and ANKHD1. Moreover, overexpression of ANKHD1 downregulated the activity of a p21 promoter in luciferase assays. Decrease in luciferase activity suggests a direct role of ANKHD1 in p21 transcriptional regulation. In addition confocal analysis after U266 cells were treated with Leptomycin B (LMB) for 24 h showed accumulation of ANKHD1 inside the nucleus as compared to untreated cells where ANKHD1 was found to be predominantly in cytoplasm. This suggests ANKHD1 might be shuttling between cytoplasm and nucleus. In conclusion, ANKHD1 promotes MM growth by repressing p21 a potent cell cycle regulator.