900 resultados para Google Analytics
Resumo:
Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used fbr masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner.
Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation
Resumo:
Interaction between Paenibacillus polymyxa with minerals such as hematite, corundum, quartz and kaolinite brought about significant surface chemical changes on all the minerals. Quartz and kaolinite were rendered more hydrophobic, while hematite and corundum, became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and corundum and of proteins on quartz and kaolinite was responsible for the above surface-chemical changes. Bio-pretreatment of the above iron ore mineral mixtures resulted in the selective separation of silica and alumina from iron oxide, through bioflotation and bioflocculation. The utility of bioprocessing in the beneficiation of iron ores is demonstrated.
Resumo:
Big Data and predictive analytics have received significant attention from the media and academic literature throughout the past few years, and it is likely that these emerging technologies will materially impact the mining sector. This short communication argues, however, that these technological forces will probably unfold differently in the mining industry than they have in many other sectors because of significant differences in the marginal cost of data capture and storage. To this end, we offer a brief overview of what Big Data and predictive analytics are, and explain how they are bringing about changes in a broad range of sectors. We discuss the “N=all” approach to data collection being promoted by many consultants and technology vendors in the marketplace but, by considering the economic and technical realities of data acquisition and storage, we then explain why a “n « all” data collection strategy probably makes more sense for the mining sector. Finally, towards shaping the industry’s policies with regards to technology-related investments in this area, we conclude by putting forward a conceptual model for leveraging Big Data tools and analytical techniques that is a more appropriate fit for the mining sector.
Resumo:
Isotope-shift exponent (cu) and the pressure coefficient of superconducting transition temperature (beta) have been studied in the nonadiabatic limit. We have considered the effect of nonadiabaticity in both within and beyond the Migdal-Eliashberg formalism. It reveals from our study that the pressure coefficient of superconducting transition is high for the low-T-c region and low for the high-T-c region and the minimum value of alpha is obtained where the transition temperature is maximum. Lowest value of isotope-shift exponent is obtained for small momentum exchange between the electrons and the bosonic field. Qualitative variation of beta with temperature is consistent with the experimental results of the hole doped superconductors for small momentum exchange.
Resumo:
This paper is the second in a two-part series that maps continuities and ruptures in conceptions of power and traces their effects in educational discourse on 'the child'. It delineates two post-Newtonian intellectual trajectories through which concepts of 'power' arrived at the theorization of 'the child': the paradoxical bio-physical inscriptions of human-ness that accompanied mechanistic worldviews and the explanations for social motion in political philosophy. The intersection of pedagogical theories with 'the child' and 'power' is further traced from the latter 1800s to the present, where a Foucaultian analytics of power-as-effects is reconsidered in regard to histories of motion. The analysis culminates in an examination of post-Newtonian (dis)continuities in the theorization of power, suggesting some productive paradoxes that inhabit turn of the 21st-century conceptualizations of the social.
Resumo:
"In Perpetual Motion is an "historical choreography" of power, pedagogy, and the child from the 1600s to the early 1900s. It breaks new ground by historicizing the analytics of power and motion that have interpenetrated renditions of the young. Through a detailed examination of the works of John Locke, Jean-Jacques Rousseau, Johann Herbart, and G. Stanley Hall, this book maps the discursive shifts through which the child was given a unique nature, inscribed in relation to reason, imbued with an effectible interiority, and subjected to theories of power and motion. The book illustrates how developmentalist visions took hold in U.S. public school debates. It documents how particular theories of power became submerged and taken for granted as essences inside the human subject. In Perpetual Motion studiously challenges views of power as in or of the gaze, tracing how different analytics of power have been used to theorize what gazing could notice."--BOOK JACKET.
Resumo:
"Rereading the historical record indicates that it is no longer so easy to argue that history is simply prior to its forms. Since the mid-1990s a new wave of research has formed around wider debates in the humanities and social sciences, such as decentering the subject, new analytics of power, reconsideration of one-dimensional time and three-dimensional space, attention to beyond-archival sources, alterity, Otherness, the invisible, and more. In addition, broader and contradictory impulses around the question of the nation - transnational, post-national, proto-national, and neo-national movements – have unearthed a new series of problematics and focused scholarly attention on traveling discourses, national imaginaries, and less formal processes of socialization, bonding, and subjectification. New Curriculum History challenges prior occlusions in the field, building upon and departing from previous waves of scholarship, extending the focus beyond the insularity of public schooling, the traditional framework of the self-contained nation-state, and the psychology of the schooled individual. Drawing on global studies, historical sociology, postcolonial studies, critical race theory, visual culture theory, disability studies, psychoanalytics, Cambridge school structuralisms, poststructuralisms, and infra- and transnational approaches the volume holds together not despite but because of differences and incommensurabilities in rereading historical records. Audience: Scholars and students in curriculum studies, history, education, philosophy, and cultural studies will be interested in these chapters for their methodological range, their innovations and their deterritorializations."--publisher website
Resumo:
Hexagonal Cu-2 Te has been synthesised by mechanical alloying from elemental powders. The milling time required for the synthesis is longer than that reported for other tellurides. The mechanical grinding of the bulk Cu2Te obtained by the melting route does not change the structure. Prolonged milling as well as grinding beyond 40 h lead to a decrease in grain size to nanometer level. The cold compaction of milled or ground powders exhibit much smaller Seebeck coefficient (thermopower). However, cold compaction of samples milled for longer time (>150 h) lead to the thermopower values close to that of the bulk indicating significant improvement of rheological properties at room temperature for powders milled for long times.
Resumo:
Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.
Resumo:
Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.
Resumo:
We have studied the low magnetic field high temperature region of the H-T phase diagram of Bi2Sr2CaCu2O8 single crystals using the technique of non-resonant rf response at a frequency of 20 MHz. With H(rf)parallel to a, H parallel to c, the isothermal magnetic field scans below T-c show that the frequency f(H) of the tank circuit decreases continuously with increase in H before saturating at H similar to H-D(T). Such a decrease in f(H) reflects increasing rf penetration into the weakly screened region between CuO bilayers. The saturation of f(H) at its lowest value for H similar to H-D(T) indicates complete rf penetration land hence the disappearance of field dependence) due to the vanishing of the screening rf currents I-rf(c) in those regions or equivalently when the phase coherence between adjacent superconducting layers vanishes. Therefore H,(T) represents the decoupling of the adjacent superconducting bilayers, and hence also a 3D to 2D decoupling transition of the vortex structure. Simultaneous monitoring of the field dependent rf power dissipation P(H) shows a maximum in dP/dH at H-D(T). The observed H-D(T) line in many crystals is in excellent agreement with the (l/t-1) behavior proposed for decoupling.
Resumo:
Many websites presently provide the facility for users to rate items quality based on user opinion. These ratings are used later to produce item reputation scores. The majority of websites apply the mean method to aggregate user ratings. This method is very simple and is not considered as an accurate aggregator. Many methods have been proposed to make aggregators produce more accurate reputation scores. In the majority of proposed methods the authors use extra information about the rating providers or about the context (e.g. time) in which the rating was given. However, this information is not available all the time. In such cases these methods produce reputation scores using the mean method or other alternative simple methods. In this paper, we propose a novel reputation model that generates more accurate item reputation scores based on collected ratings only. Our proposed model embeds statistical data, previously disregarded, of a given rating dataset in order to enhance the accuracy of the generated reputation scores. In more detail, we use the Beta distribution to produce weights for ratings and aggregate ratings using the weighted mean method. Experiments show that the proposed model exhibits performance superior to that of current state-of-the-art models.
Resumo:
Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.
Resumo:
This chapter imports Michel Callon’s model of the ‘hybrid forum’ (Callon et al, 2009, p. 18) into social media research, arguing that certain kinds of hashtag publics can be mapped onto this model. It explores this idea of the hashtag as hybrid forum through the worked example of #agchatoz—a hashtag used as both ‘meetup’ organizer for Australian farmers and other stakeholders in Australian agriculture, and as a topic marker for general discussion of related issues. Applying the principles and techniques of digital methods (Rogers, 2013), we employ a standard suite of analytics to a longitudinal dataset of #agchatoz tweets. The results are used not only to describe various elements and dynamics of this hashtag, but also to experiment with the articulation of such approaches with the theoretical model of the hybrid forum, as well as exploring the ways that controversies animate and transform such forums as part of the emergence and cross-pollination of issue publics.
Resumo:
An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.