970 resultados para Genetic Variance-covariance Matrix
Resumo:
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
Resumo:
With the trend in molecular epidemiology towards both genome-wide association studies and complex modelling, the need for large sample sizes to detect small effects and to allow for the estimation of many parameters within a model continues to increase. Unfortunately, most methods of association analysis have been restricted to either a family-based or a case-control design, resulting in the lack of synthesis of data from multiple studies. Transmission disequilibrium-type methods for detecting linkage disequilibrium from family data were developed as an effective way of preventing the detection of association due to population stratification. Because these methods condition on parental genotype, however, they have precluded the joint analysis of family and case-control data, although methods for case-control data may not protect against population stratification and do not allow for familial correlations. We present here an extension of a family-based association analysis method for continuous traits that will simultaneously test for, and if necessary control for, population stratification. We further extend this method to analyse binary traits (and therefore family and case-control data together) and accurately to estimate genetic effects in the population, even when using an ascertained family sample. Finally, we present the power of this binary extension for both family-only and joint family and case-control data, and demonstrate the accuracy of the association parameter and variance components in an ascertained family sample.
Resumo:
Knowledge of the quantitative genetics of resistance to parasitism is key to appraise host evolutionary responses to parasite selection. Here, we studied effects of common origin (i.e. genetic and pre-hatching parental effects) and common rearing environment (i.e. post-hatching parental effects and other environment effects) on variance in ectoparasite load in nestling Alpine swifts (Apus melba). This colonial bird is intensely parasitized by blood sucking louse-flies that impair nestling development and survival. By cross-fostering half of the hatchlings between pairs of nests, we show strong significant effect of common rearing environment on variance (90.7% in 2002 and 90.9% in 2003) in the number of louse-flies per nestling and no significant effect of common origin on variance in the number of louse-flies per nestling. In contrast, significant effects of common origin were found for all the nestling morphological traits (i.e. body mass, wing length, tail length, fork length and sternum length) under investigation. Hence, our study suggests that genetic and pre-hatching parental effects play little role in the distribution of parasites among nestling Alpine swifts, and thus that nestlings have only limited scope for evolutionary responses against parasites. Our results highlight the need to take into consideration environmental factors, including the evolution of post-hatching parental effects such as nest sanitation, in our understanding of host-parasite relationships.
Resumo:
Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.
Resumo:
We investigate the population genetic structure of the Maghrebian bat, Myotis punicus, between the mainland and islands to assess the island colonization pattern and current gene flow between nearby islands and within the mainland. Location North Africa and the Mediterranean islands of Corsica and Sardinia. Methods We sequenced part of the control region (HVII) of 79 bats across 11 colonies. The phylogeographical pattern was assessed by analysing molecular diversity indices, examining differentiation among populations and estimating divergence time. In addition, we genotyped 182 bats across 10 colonies at seven microsatellite loci. We used analysis of molecular variance and a Bayesian approach to infer nuclear population structure. Finally, we estimated sex-specific dispersal between Corsica and Sardinia. Results Mitochondrial analyses indicated that colonies between Corsica, Sardinia and North Africa are highly differentiated. Within islands there was no difference between colonies, while at the continental level Moroccan and Tunisian populations were highly differentiated. Analyses with seven microsatellite loci showed a similar pattern. The sole difference was the lack of nuclear differentiation between populations in North Africa, suggesting a male-biased dispersal over the continental area. The divergence time of Sardinian and Corsican populations was estimated to date back to the early and mid-Pleistocene. Main conclusions Island colonization by the Maghrebian bats seems to have occurred in a stepping-stone manner and certainly pre-dated human colonization. Currently, open water seems to prevent exchange of bats between the two islands, despite their ability to fly and the narrowness of the strait of Bonifacio. Corsican and Sardinian populations are thus currently isolated from any continental gene pool and must therefore be considered as different evolutionarily significant units (ESU).
Resumo:
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
Resumo:
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.
Resumo:
Rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell. Arg.] budgrafts of seven clones were evaluated on five contrasting sites in the plateau region of the São Paulo State, Brazil. The objective of this work was to study the phenotypic stability for girth growth. The experimental design was a randomized block design with three replications and seven treatments. Analysis of variance of girth at six-year plant growth indicated a highly significant clone x site interaction. Only linear sites and clone x site components of clone x year interaction were significant, indicating that the performance of clones over sites for this trait could be predicted. The clones GT 1 and PB 235 showed the greatest stability in relation to girth growth, with foreseen responses to change, introduced in the sites. The clones PB 235 and IAN 873 showed significative difference in relation to regression coefficient, representing clones with specific adaptability on favorable and unfavorable sites respectively. The clone GT 1 became the most promissory one in the study of stability and adaptability even showing low girth growth. Expected genetic gains from planting sites, along with estimates of clonal variance and repeatability of clonal means are generally greatest or close to the greatest when selection is done at the same site.
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.
Resumo:
This paper focused on four alternatives of analysis of experiments in square lattice as far as the estimation of variance components and some genetic parameters are concerned: 1) intra-block analysis with adjusted treatment and blocks within unadjusted repetitions; 2) lattice analysis as complete randomized blocks; 3) intrablock analysis with unadjusted treatment and blocks within adjusted repetitions; 4) lattice analysis as complete randomized blocks, by utilizing the adjusted means of treatments, obtained from the analysis with recovery of interblock information, having as mean square of the error the mean effective variance of this same analysis with recovery of inter-block information. For the four alternatives of analysis, the estimators and estimates were obtained for the variance components and heritability coefficients. The classification of material was also studied. The present study suggests that for each experiment and depending of the objectives of the analysis, one should observe which alternative of analysis is preferable, mainly in cases where a negative estimate is obtained for the variance component due to effects of blocks within adjusted repetitions.
Resumo:
Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. Methods: We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Results: Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Conclusions: Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.)
Resumo:
Geographical barriers may affect the genetic structure of populations by reducing gene exchanges among them. In Switzerland, the common shrew Sorer araneus Linnaeus, 1758 is mostly confined to mountainous areas because of a competing sister species, Millet's shrew S. coronatus Millet, 1828, which occupies most of the Swiss lowlands. The structure of common shrew populations found in different alpine valleys may therefore be affected by the topography. Using microsatellites, genetic structuring of seven shrew populations is investigated among four different valleys of, the Swiss Alps. Using the exact G-test, significant genetic structuring is detected between several valleys. Isolation by distance does not fully explain our results. It appears that high mountain ridges (> 2400 m) can significantly reduce gene flow. F- and R-statistics are estimated and compared to the exact G-tests results. Mantel tests show that F-ST, unlike R-ST, is significantly correlated with differentiation. F-ST remains however low even at high differentiation levels, while R-ST has a high variance. We discuss how these results may have wider implications with regards the interpretation of microsatellite data. Finally, a new microsatellite locus, L99, appears to discriminate S. araneus of the Vaud and Cordon races from both S. araneus Valais and S. coronatus.
Resumo:
Conservation and improvement strategies should be based on the association between genetic and phenotypic characteristics. The objective of this work was to characterize five native Brazilian cattle breeds (Caracu, Crioulo Lageano, Curraleiro, National Polled and Pantaneiro) and two commercial breeds (Holstein and Nellore) using RAPD technique to estimate genetic distances and variability between and within breeds. Genetic relationships were investigated using 22 primers which generated 122 polymorphic bands. Analysis of molecular variance indicated that most of the genetic variation lay among individuals within populations. The genetic variabilities between pairs of breeds were statistically significant. The smallest genetic divergence was between Crioulo Lageano and Curraleiro.The National Polled, although historically considered to be of Bos taurus aquitanicus origin,similar to theCaracu, was grouped together with the other breeds of Bos taurus ibericus origin. Generally, the individual breeds formed distinct clusters except the National Polled. The RAPD technique was capable to distinguish genetically between the breeds studied; the Caracu, Crioulo Lageano, Curraleiro and Pantaneiro may be considered distinct genetic entities thereby proving the uniqueness of the populations; the National Polled has not been able to re-establish itself after its decline in the 1950s, thereby losing its genetic identity.
Resumo:
Genome-wide studies in major depression have identified few replicated associations, potentially due to heterogeneity within the disorder. Several studies have suggested that age at onset (AAO) can distinguish sub-types of depression with specific heritable components. This paper investigates the role of AAO in the genetic susceptibility for depression using genome-wide association data on 2,746 cases and 1,594 screened controls from the RADIANT studies, with replication performed in 1,471 cases and 1,403 controls from two Munich studies. Three methods were used to analyze AAO: First a time-to-event analysis with controls censored, secondly comparing controls to case-subsets defined using AAO cut-offs, and lastly analyzing AAO as a quantitative trait. In the time-to-event analysis three SNPs reached suggestive significance (P < 5E-06), overlapping with the original case-control analysis of this study. In a case-control analysis using AAO thresholds, SNPs in 10 genomic regions showed suggestive association though again none reached genome-wide significance. Lastly, case-only analysis of AAO as a quantitative trait resulted in 5 SNPs reaching suggestive significance. Sex specific analysis was performed as a secondary analysis, yielding one SNP reaching genome-wide significance in early-onset males. No SNPs achieved significance in the replication study after correction for multiple testing. Analysis of AAO as a quantitative trait did suggest that, across all SNPs, common genetic variants explained a large proportion of the variance (51%, P = 0.04). This study provides the first focussed analysis of the genetic contribution to AAO in depression, and establishes a statistical framework that can be applied to a quantitative trait underlying any disorder. © 2012 Wiley Periodicals, Inc.
Resumo:
The objective of this study was to verify the genetic diversity between and within seven populations of Moxotó goat (n = 264) from the States of Pernambuco, Paraíba and Rio Grande do Norte, using RAPD (Random Amplified Polymorphic DNA). Moxotó, as well as other naturalized breeds, suffers genetic losses due to the indiscriminate miscegenation with breeds raised in the Northeast Region of Brazil. The genetic characterization of these genetic resources is essential to conservation and breeding programs. DNA was extracted from lymphocytes using a non-organic protocol. The 16 primers used were selected from 120 decamer oligonucleotide primers and generated 56 polymorphic bands. The analysis of molecular variance (AMOVA) showed that the greater part of total genetic variability (71.55%) was due to differences between individuals within populations, while 21.21% was among populations. The analysis of variance among the pairs of populations demonstrated that the populations located in Floresta, PE x Angicos, RN presented a smaller value of intrapopulational differentiation (8.9%), indicating low genetic variability among them. Nei's genetic distances varied between 0.0546 and 0.1868 in the populations. The dendrogram generated showed that the Canindé breed, used as outgroup, clustered with the populations of Moxotó, indicating a possible common origin of the naturalized goat breeds.