926 resultados para Generic linear ODEs
Resumo:
Low temperature (77K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. pee 6301, and cold-hardening in winter rye (Secale cereale L. cv. Puma). Samples were oriented for spectroscopy using the gel squeezing method (Abdourakhmanov et aI., 1979) and brought to 77K in liquid nitrogen. The linear dichroism (LD) spectra of Synechococcus 6301 phycobilisome/thylakoid membrane fragments cross-linked in light state 1 and light state 2 with glutaraldehyde showed differences in both chlorophyll a and phycobilin orientation. A decrease in the relative amplitude of the 681nm chlorophyll a positive LD peak was observed in membrane fragments in state 2. Reorientation of the phycobilisome (PBS) during the transition to state 2 resulted in an increase in core allophycocyanin absorption parallel to the membrane, and a decrease in rod phycocyanin parallel absorption. This result supports the "spillover" and "PBS detachment" models of the light state transition in PBS-containing organisms, but not the "mobile PBS" model. A model was proposed for PBS reorientation upon transition to state 2, consisting of a tilt in the antenna complex with respect to the membrane plane. Linear dichroism spectra of PBS/thylakoid fragments from the red alga, Porphyridium cruentum, grown in green light (containing relatively more PSI) and red light (containing relatively more PSll) were compared to identify chlorophyll a absorption bands associated with each photosystem. Spectra from red light - grown samples had a larger positive LD signal on the short wavelength side of the 686nm chlorophyll a peak than those from green light - grown fragments. These results support the identification of the difference in linear dichroism seen at 681nm in Synechococcus spectra as a reorientation of PSll chromophores. Linear dichroism spectra were taken of thylakoid membranes isolated from winter rye grown at 20°C (non-hardened) and 5°C (cold-hardened). Differences were seen in the orientation of chlorophyll b relative to chlorophyll a. An increase in parallel absorption was identified at the long-wavelength chlorophyll a absorption peak, along with a decrease in parallel absorption from chlorophyll b chromophores. The same changes in relative pigment orientation were seen in the LD of isolated hardened and non-hardened light-harvesting antenna complexes (LHCII). It was concluded that orientational differences in LHCII pigments were responsible for thylakoid LD differences. Changes in pigment orientation, along with differences observed in long-wavelength absorption and in the overall magnitude of LD in hardened and non-hardened complexes, could be explained by the higher LHCII monomer:oligomer ratio in hardened rye (Huner et ai., 1987) if differences in this ratio affect differential light scattering properties, or fluctuation of chromophore orientation in the isolated LHCII sample.
Resumo:
Behavioral researchers commonly use single subject designs to evaluate the effects of a given treatment. Several different methods of data analysis are used, each with their own set of methodological strengths and limitations. Visual inspection is commonly used as a method of analyzing data which assesses the variability, level, and trend both within and between conditions (Cooper, Heron, & Heward, 2007). In an attempt to quantify treatment outcomes, researchers developed two methods for analysing data called Percentage of Non-overlapping Data Points (PND) and Percentage of Data Points Exceeding the Median (PEM). The purpose of the present study is to compare and contrast the use of Hierarchical Linear Modelling (HLM), PND and PEM in single subject research. The present study used 39 behaviours, across 17 participants to compare treatment outcomes of a group cognitive behavioural therapy program, using PND, PEM, and HLM on three response classes of Obsessive Compulsive Behaviour in children with Autism Spectrum Disorder. Findings suggest that PEM and HLM complement each other and both add invaluable information to the overall treatment results. Future research should consider using both PEM and HLM when analysing single subject designs, specifically grouped data with variability.
Resumo:
The purpose of this study was to examine whether English a Second Language (ESL) instructors’ ethnocentrism could be reduced using multicultural education (MCE) principles. There were three focus group discussions and a Likert scale questionnaire. The findings demonstrated that while ESL instructors were conscious of systemic barriers, media stereotypes, and bullying, more diversity training is required in order to improve teachers’ attitudes, responses, and instructional strategies regarding integration issues due to the increasing diversity of learners present in classrooms today. The findings of the study also demonstrated that MCE principles could be used to effectively raise the awareness of ESL instructors when dealing with integration and assimilation issues. When immigration, human rights, and multicultural policies were examined critically, ESL instructors were able to improve their cross-cultural skills in the classroom to be more inclusive towards diverse ethnic groups by giving learners greater opportunities to express themselves. As a result, learners’ knowledge, experience, and skills were validated in the classroom leading to a more meaningful learning experience.
Resumo:
In a linear production model, we characterize the class of efficient and strategy-proof allocation functions, and the class of efficient and coalition strategy-proof allocation functions. In the former class, requiring equal treatment of equals allows us to identify a unique allocation function. This function is also the unique member of the latter class which satisfies uniform treatment of uniforms.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.
Resumo:
We derive conditions that must be satisfied by the primitives of the problem in order for an equilibrium in linear Markov strategies to exist in some common property natural resource differential games. These conditions impose restrictions on the admissible form of the natural growth function, given a benefit function, or on the admissible form of the benefit function, given a natural growth function.
Resumo:
Affiliation: Institut de recherche en immunologie et en cancérologie, Université de Montréal