961 resultados para Generalized Additive Models
Resumo:
Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the species’ distribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications
Resumo:
In this work we study an Hammerstein generalized integral equation u(t)=∫_{-∞}^{+∞}k(t,s) f(s,u(s),u′(s),...,u^{(m)}(s))ds, where k:ℝ²→ℝ is a W^{m,∞}(ℝ²), m∈ℕ, kernel function and f:ℝ^{m+2}→ℝ is a L¹-Carathéodory function. To the best of our knowledge, this paper is the first one to consider discontinuous nonlinearities with derivatives dependence, without monotone or asymptotic assumptions, on the whole real line. Our method is applied to a fourth order nonlinear boundary value problem, which models moderately large deflections of infinite nonlinear beams resting on elastic foundations under localized external loads.
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
Model misspecification affects the classical test statistics used to assess the fit of the Item Response Theory (IRT) models. Robust tests have been derived under model misspecification, as the Generalized Lagrange Multiplier and Hausman tests, but their use has not been largely explored in the IRT framework. In the first part of the thesis, we introduce the Generalized Lagrange Multiplier test to detect differential item response functioning in IRT models for binary data under model misspecification. By means of a simulation study and a real data analysis, we compare its performance with the classical Lagrange Multiplier test, computed using the Hessian and the cross-product matrix, and the Generalized Jackknife Score test. The power of these tests is computed empirically and asymptotically. The misspecifications considered are local dependence among items and non-normal distribution of the latent variable. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the performance of the tests deteriorates. None of the tests considered show an overall superior performance than the others. In the second part of the thesis, we extend the Generalized Hausman test to detect non-normality of the latent variable distribution. To build the test, we consider a seminonparametric-IRT model, that assumes a more flexible latent variable distribution. By means of a simulation study and two real applications, we compare the performance of the Generalized Hausman test with the M2 limited information goodness-of-fit test and the Likelihood-Ratio test. Additionally, the information criteria are computed. The Generalized Hausman test has a better performance than the Likelihood-Ratio test in terms of Type I error rates and the M2 test in terms of power. The performance of the Generalized Hausman test and the information criteria deteriorates when the sample size is small and with a few items.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
Patients with myofascial pain experience impaired mastication, which might also interfere with their sleep quality. The purpose of this study was to evaluate the jaw motion and sleep quality of patients with myofascial pain and the impact of a stabilization device therapy on both parameters. Fifty women diagnosed with myofascial pain by the Research Diagnostic Criteria were enrolled. Pain levels (visual analog scale), jaw movements (kinesiography), and sleep quality (Epworth Sleepiness Scale; Pittsburgh Sleep Quality Index) were evaluated before (control) and after stabilization device use. Range of motion (maximum opening, right and left excursions, and protrusion) and masticatory movements during Optosil mastication (opening, closing, and total cycle time; opening and closing angles; and maximum velocity) also were evaluated. Repeated-measures analysis of variance in a generalized linear mixed models procedure was used for statistical analysis (α=.05). At baseline, participants with myofascial pain showed a reduced range of jaw motion and poorer sleep quality. Treatment with a stabilization device reduced pain (P<.001) and increased both mouth opening (P<.001) and anteroposterior movement (P=.01). Also, after treatment, the maximum opening (P<.001) and closing (P=.04) velocities during mastication increased, and improvements in sleep scores for the Pittsburgh Sleep Quality Index (P<.001) and Epworth Sleepiness Scale (P=.04) were found. Myofascial pain impairs jaw motion and quality of sleep; the reduction of pain after the use of a stabilization device improves the range of motion and sleep parameters.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Health economic evaluations require estimates of expected survival from patients receiving different interventions, often over a lifetime. However, data on the patients of interest are typically only available for a much shorter follow-up time, from randomised trials or cohorts. Previous work showed how to use general population mortality to improve extrapolations of the short-term data, assuming a constant additive or multiplicative effect on the hazards for all-cause mortality for study patients relative to the general population. A more plausible assumption may be a constant effect on the hazard for the specific cause of death targeted by the treatments. To address this problem, we use independent parametric survival models for cause-specific mortality among the general population. Because causes of death are unobserved for the patients of interest, a polyhazard model is used to express their all-cause mortality as a sum of latent cause-specific hazards. Assuming proportional cause-specific hazards between the general and study populations then allows us to extrapolate mortality of the patients of interest to the long term. A Bayesian framework is used to jointly model all sources of data. By simulation, we show that ignoring cause-specific hazards leads to biased estimates of mean survival when the proportion of deaths due to the cause of interest changes through time. The methods are applied to an evaluation of implantable cardioverter defibrillators for the prevention of sudden cardiac death among patients with cardiac arrhythmia. After accounting for cause-specific mortality, substantial differences are seen in estimates of life years gained from implantable cardioverter defibrillators.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.
Resumo:
The study of female broiler breeders is of great importance for the country as poultry production is one of the largest export items, and Brazil is the second largest broiler meat exporter. Animal behavior is known as a response to the effect of several interaction factors among them the environment. In this way the internal housing environment is an element that gives hints regarding to the bird s thermal comfort. Female broiler breeder behavior, expresses in form of specific pattern the bird s health and welfare. This research had the objective of applying predictive statistical models through the use of simulation, presenting animal comfort scenarios facing distinct environmental conditions. The research was developed with data collected in a controlled environment using Hybro - PG® breeding submitted to distinct levels of temperature, three distinct types of standard ration and age. Descriptive and exploratory analysis were proceeded, and afterwards the modeling process using the Generalized Estimation Equation (GEE). The research allowed the development of the thermal comfort indicators by statistical model equations of predicting female broiler breeder behavior under distinct studied scenarios.
Resumo:
A common breeding strategy is to carry out basic studies to investigate the hypothesis of a single gene controlling the trait (major gene) with or without polygenes of minor effect. In this study we used Bayesian inference to fit genetic additive-dominance models of inheritance to plant breeding experiments with multiple generations. Normal densities with different means, according to the major gene genotype, were considered in a linear model in which the design matrix of the genetic effects had unknown coefficients (which were estimated in individual basis). An actual data set from an inheritance study of partenocarpy in zucchini (Cucurbita pepo L.) was used for illustration. Model fitting included posterior probabilities for all individual genotypes. Analysis agrees with results in the literature but this approach was far more efficient than previous alternatives assuming that design matrix was known for the generations. Partenocarpy in zucchini is controlled by a major gene with important additive effect and partial dominance.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The aim of this study was to comparatively assess dental arch width, in the canine and molar regions, by means of direct measurements from plaster models, photocopies and digitized images of the models. The sample consisted of 130 pairs of plaster models, photocopies and digitized images of the models of white patients (n = 65), both genders, with Class I and Class II Division 1 malocclusions, treated by standard Edgewise mechanics and extraction of the four first premolars. Maxillary and mandibular intercanine and intermolar widths were measured by a calibrated examiner, prior to and after orthodontic treatment, using the three modes of reproduction of the dental arches. Dispersion of the data relative to pre- and posttreatment intra-arch linear measurements (mm) was represented as box plots. The three measuring methods were compared by one-way ANOVA for repeated measurements (α = 0.05). Initial / final mean values varied as follows: 33.94 to 34.29 mm / 34.49 to 34.66 mm (maxillary intercanine width); 26.23 to 26.26 mm / 26.77 to 26.84 mm (mandibular intercanine width); 49.55 to 49.66 mm / 47.28 to 47.45 mm (maxillary intermolar width) and 43.28 to 43.41 mm / 40.29 to 40.46 mm (mandibular intermolar width). There were no statistically significant differences between mean dental arch widths estimated by the three studied methods, prior to and after orthodontic treatment. It may be concluded that photocopies and digitized images of the plaster models provided reliable reproductions of the dental arches for obtaining transversal intra-arch measurements.
Resumo:
Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F) were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05) and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm), mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm), polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm) and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm). All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.