972 resultados para Fluoreto de sódio
Resumo:
O tratamento de sementes com micronutrientes, como o molibdênio, garante uma maior uniformidade de aplicação, sendo que, a quantidade a ser aplicada desse elemento nas sementes deve ser suficiente para provir à exigência para o desenvolvimento e produção da cultura. Assim, objetivou-se com o presente trabalho avaliar a qualidade fisiológica de sementes de milho tratadas com molibdênio. A qualidade das sementes foi avaliada por meio da determinação do teor de água, do teste de germinação, da primeira contagem de germinação e da emissão de raízes primárias. Os tratamentos testados consistiram de cinco híbridos (DOW CO32; DOW 2B587; DOW 2B688; PIONEER 30F35 e PIONEER 30K73) e cinco doses de molibdênio aplicadas via semente (0; 7,5; 22,5; 67,5; 202,5 g ha-1 de molibdênio). A fonte de molibdênio utilizada foi o molibdato de sódio dihidratado (39% de molibdênio), sendo que a aplicação do molibdênio foi efetuada por meio da mistura com o fungicida líquido de suspensão concentrada carboxina+thiram sobre as sementes. A qualidade fisiológica das sementes de milho é influenciada negativamente por doses crescentes de molibdênio aplicadas. O híbrido de milho DOW 2B587 obteve melhor resposta à aplicação da maior dose de molibdênio em relação aos demais híbridos estudados.
Resumo:
Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons
Resumo:
No presente trabalho, objetivou-se avaliar os efeitos da dessecação e identificar lesões por predação por insetos, em diásporos de canela-batalha (Cryptocarya aschersoniana Mez.), utilizando-se testes de raios X. Os danos provocados pela dessecação foram dimensionados nas imagens e associados à formação de plântulas. Diásporos recém-beneficiados (45 % de umidade e 37 % de germinação) foram colocados para secar em sala climatizada (20 ºC e 60 % UR), dentro de bandejas plásticas em camada única. Posteriormente, com o intuito de acelerar o processo de secagem, foram colocados em caixas de secagem com solução saturada de hidróxido de sódio (28 % UR) e amostrados com 45, 37, 35, 31 e 26 % de umidade. Para as radiografias, utilizou-se a intensidade de radiação de 40 kVp e tempo de exposição de 1,5 minutos. Posteriormente, as radiografias foram fotografadas e as imagens analisadas em computador, sendo medido o afastamento entre o endocarpo e a semente. As sementes foram classificadas em sementes intactas, sementes com afastamento parcial, sementes com afastamento total e sementes predadas. Os testes de germinação foram realizados sobre areia, em germinadores tipo Mangelsdorf a 25 ºC e luz branca constante. Pelos resultados, observa-se que a germinação é comprometida quando o teor de água das sementes fica abaixo de 26 %. Nesse ponto, o afastamento entre o endocarpo e a semente é de 0,65 mm. Houve uma correlação positiva entre a viabilidade das sementes, avaliada pelo teste de germinação, e o afastamento entre o endocarpo e a semente observado nas radiografias. A análise radiográfica possibilita identificar danos provocados por predação após infestação por insetos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Microalgae are microscopic photosynthetic organisms that grow rapidly and in different environmental conditions due to their simple cellular structure. The cultivation of microalgae is a biological system capable of storing solar energy through the production of organic compounds via photosynthesis, and these species presents growth faster than land plants, enabling higher biomass yield. Thus, it is understood that the cultivation of these photosynthetic mechanisms is part of a relevant proposal, since, when compared to other oil producing raw materials, they have a significantly higher productivity, thus being a raw material able to complete the current demand by biodiesel . The overall aim of the thesis was to obtain biofuel via transesterification process of bio oil from the microalgae Isochrysis galbana. The specific objective was to estimate the use of a photobioreactor at the laboratory level, for the experiments of microalgae growth; evaluating the characteristics of biodiesel from microalgae produced by in situ transesterification process; studying a new route for disinfection of microalgae cultivation, through the use of the chemical agent sodium hypochlorite. The introduction of this new method allowed obtaining the kinetics of the photobioreactor for cultivation, besides getting the biomass needed for processing and analysis of experiments in obtaining biodiesel. The research showed acceptable results for the characteristics observed in the bio oil obtained, which fell within the standards of ANP Resolution No. 14, dated 11.5.2012 - 18.5.2012. Furthermore, it was demonstrated that the photobioreactor designed meet expectations about study culture growth and has contributed largely to the development of the chosen species of microalgae. Thus, it can be seen that the microalgae Isochrysis galbana showed a species with potential for biodiesel production
Resumo:
Availability of good quality water has been reduced vertiginously, over the last decade, in the world. In some regions, the water resources have high concentration of the dissolved salts, these characteristics of the water make it s use impossible. Water quality can be a limitation for irrigated agriculture, principally in regions of arid or semiarid climate where the water resources are generally saline and are exposed at high evaporation ratio. For that reason, precipitation of the salts occurs near the soil surface and those salts themselves cumulate in the vegetal tissue, reducing the soil fertility and crop production. The adoption of tolerant crop to the water salinity and soil salinity, adaptable to the climatic conditions is other emergent necessity. This work had the goal of studying the effects of four salinity levels of the irrigation water salinity and use of mulch, dried leaves of Forest mangrove (Acacia mangiumWilld), in cultivated soil with amaranth (Amaranthus cruentus, BRS Alegria variety), in greenhouse. It was utilized the transplant of plants to PVC columns, containing 30 kg of silty loam soil, 10 days after emerging, with space of 50 x 50 cm between lines. Treatments were composed by combination of four levels of salinity (0.147; 1.500; 3.000 e 4.500 dS m-1), obtained by addition NaCl (commercial) to irrigation water and soil with and without protection, by mulch. A factorial system 4 x 2 was used with four repetitions, totalizing 32 parcels. The concentrations of nutrients in soil solution have been evaluated, in the dry matter of the vegetal tissue (roots, stem, leaves and raceme residue), at the end of the vegetative cycle. The use of soil protection reduced time for the beginning inflorescence of plants, at the same time, the increase of the salinity delayed this phase of amaranth development. The use of the mulch effectively increased the height, stem diameter, area of the larger leaf, humidity and dry matter content and amaranth grain production. The vegetal species showed salinity tolerance to experimented levels. The adopted treatments did not affect the pH values, exchangeable cation contents, electrical conductivity of soil solution (EC1:5) and saturated extract (ECSE), and Ca+2, Mg+, Fe+2 and Mn+2 contents, in the soil solution. The increase of the salinity concentration in the irrigation water inhibited the mineralization process of the organic matter (OM) and, consequently, the efficiency in the it´s utilization by plants, at the same time, produced increase in the values of the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR) and potassium adsorption ratio (PAR), in the soil solution. Therefore, the use of the mulch did not affect the first three parameters. The protein and nutrient contents: K+, Ca+2, P, Mg+2 e Cu+2, in amaranth grains, were improved by tillage condition. The raceme residues showed chemical/nutritional composition that makes advantageous its application in animal ration. In this context, it follows that amaranth tolerate the saline stress, of the irrigation water, until 4.500 dS m-1, temperature and relative humidity of the air predominant in the experimental environment
Resumo:
This work presents a spray-dryer designed to oxalate-niobate precursors and suitable for the production of Niobium Carbide. The dryer was intended to produce powders of controlled particle size. First, the precursor is dissolved in water to produce a solution of known concentration and then it is atomized on the spray-dryer to produce the powder. This equipment consists of a 304 stainless steel chamber, 0.48 m x 1.9 m (diameter x length), with a conical shape at the lower portion, which is assembled on a vertical platform. The chamber is heated by three 4 kW electrical resistances. In this process, drying air is heated as it flows inside a serpentine surrounding the chamber, in contrary to more traditional processes in which the hot drying air is used to heat the component. The air enters the chamber at the same temperature of the chamber, thus avoiding adherence of particles on the internal surface. The low speed flow is concurrent, directed from the top to the bottom portion of the chamber. Powders are deposited on a 0.4 m diameter tray, which separates the cylindrical portion from the conical portion of the chamber. The humid air is discharged though a plug placed underneath the collecting tray. A factorial experimental planning was prepared to study the influence of five parameters (concentration, input flow, operation temperature, drying air flow and spray air flow) on the characteristics of the powders produced. Particle size distribution and shape were measured by laser granulometry and scanning electronic microscopy. Then, the powders are submitted to reaction in a CH4 / H2 atmosphere to compare the characteristics of spray-dried powders with powders synthetizided by conventional methods
Resumo:
The objective of this scientific article is to introduce the opportunities of implementation of cleaner production (CP) in a shrimp culture farm. The methodology used for this was exploratory research implemented in a production unit located in the Northeast Brazil. The scientific article approaches since generic aspects of the technique about the management to use water, energy and the effluent characterization of this productive activity. It discusses quantitative aspects, environmental questions and chances of P+L during the productive process phases. The results points to input economy in the form of feed, soil correctives, medicines, and energy applied to the process, which range from 4% to 27%, emphasizing the small profit should be viewed as a source of considerable environment return. The authors conclude for the adoption property of this technique in this agribusiness segment, point out to the management importance of the input dosage in the quality of the final effluent, besides the adoption of a physical-chemistry remediation mechanism to the residual of Sodium metabissulphite used in the process of shrimp caught
Resumo:
The high concentration of residual oil is one of the greatest problems found in petroleum mature fields. In these reservoirs, different enhanced oil recovery methods (EOR) can be used, highlighting the microemulsion injection. The microemulsion has showed to be efficient in petroleum recovery due to its ability to promote an efficient displacement of the petroleum, acting directly in the residual oil. In this way, this research has as objective the study of microemulsion systems obtained using a commercial surfactant (TP), determining microemulsion thermal stabilities and selecting points inside the pseudoternary phases diagram, evaluating its efficiencies and choosing the best system, that has the following composition: TP as surfactant (S), isopropyl alcohol as co-surfactant (C), kerosene as oil phase, water as aqueous phase, C/S ratio = 1, and 5% sodium p-toluenesulfonate as hydrotope; being observed the following parameters for the selection of the best pseudoternary phases diagram: C/S ratio, co-surfactant nature and addition of hydrotope to the system. The efficiency in petroleum recovery was obtained using two sandstone formation systems: Assu and Botucatu. The study of thermal stabilities showed that as the concentration of active matter in the system increased, the thermal stability also increased. The best thermal stability was obtained using point F (79.56 0C). The system that presented the best recovery percentile between the three selected (3) was composed by: 70% C/S, 2% kerosene and 28% water, with 94% of total recovery efficiency and 60% with microemulsion injection, using the Botucatu formation, that in a general way presented greater efficiencies as compared with the Assu one (81.3% of total recovery efficiency and 38.3% with microemulsion injection)
Resumo:
The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
Gallium is an important material used in the electronic industry whose demand in the world market is increasing in view of its potential applications. A selective technique is required to allow for the production of the metal, separated from aluminium. Due to the fact that microemulsions constitute an attractive alternative to metal extraction procedures, microemulsified systems have been employed as gallium-selective extraction agents. Two surfactants have been synthesized: sodium 12-N,N-diethylamino-9,10-dihydroxyestearate (AMINE) and saponified coconut oil (SCO), both produced from raw materials readily available in Northeastern Brazil. Also, the commercial extraction agent KELEX-100, conventionally used with the same purpose, has been used in this work for comparison. The optimization of the extraction process with microemulsions was carried out by investigating the influence of some parameters, namely the type of cosurfactant, the cosurfactant/surfactant (C/S) ratio, the pH and concentration of metals in the aqueous phase. Pseudoternary diagrams, which are representative of the microemulsified systems under study, have been constructed in order to establish the boundaries of the regions where the several Winsor systems are formed. An experimental planning methodology (Scheffé Net) has been used to optimize the extraction. The extraction percentage values were as high as 100% for gallium and 99.99% for aluminium for the system with KELEX-100; 96.6% for gallium and 98.8% for aluminium for the system containing AMINE; and 88% for gallium and 85% for aluminium for the system with SCO. The microemulsified system chosen for presenting the best results in gallium extraction was composed by SCO/isoamyl alcohol/kerosene/Bayer licquor with a C/S ratio of 28 and pH of the original aqueous phase of 6.0. The selectivity that has not been observed in the extraction stage was accomplished in the reextraction process using HCl. For the KELEX-100 system, gallium was reextracted at 100% with 6M HCl and aluminium was reextracted at 100% with 0.8M HCl. For the AMINE system, the reextraction percentages were also 100% for both metals, using 6M HCl for gallium and 0.5M HCl for aluminium. On the other hand, the reextraction percentages for the system with SCO were as high as 84% for gallium and 92% for aluminium, with HCl in the same concentrations as those used in the AMINE system. Finally, an optimized system was applied in the gallium extraction process employing a reciprocating perforated-plates extractor. As a result, the metal content was extracted at a recovery rate of 95% for gallium and 97% for aluminium
Resumo:
The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams
Resumo:
The urban drainage is one of the powers of environmental sanitation and its scope is the quantitative and qualitative aspects. In decision making of managers and the engineering aspects of design are almost always taken into account only the quantitative aspects. However, the waters of the runoff have the highest concentrations of pollutants at the beginning of precipitation. Thus, if the plot pollution removed, the remaining portion can be used for other purposes. This work has aimed to present the variation of water quality of two drainage basins in the city of Natal / RN-Brazil to support the implementation of drainage to consider the qualitative aspect, and identify potential for the use of water. The basins (M and C) are analyzed closed-type, are in the urban area, are predominantly residential occupation and its waters are used for detention ponds and infiltration. The samples were divided into three phases, the first two direct to final points in a basin and the third in traps distributed over the surface drainage. The parameters had been analyzed were pH, conductivity, dissolved oxygen, Color, Turbidity, COD, Ammonia, nitrite, nitrate, total phosphorus, orthophosphate, Sediments solids, total solids, chloride, sulfate, alkalinity, calcium, magnesium, sodium, potassium, Heavy Metals (Chromium, Cadmium, Lead, Zinc and Copper), Eschichia coli and total coliforms. The parameters studied showed high initial pollution load, events and located in different proportions, except nitrite, heavy metals and biological indicators. The size of the surface drainage and topographic its features influence the quality of water. However, the form of sampling is crucial in the qualitative study in the basin. The samplers developed at work, were generated economic and representative results. The urban rainwater presents organic faecal indicators. The runoff of water from both basins shows no risk of salinity and sodicity for use in irrigation, should be noted the content of chloride in the choice of method of irrigation
Resumo:
The Serido is a region of northeastern Brazil highlighted by its problems related to water scarcity because of its semi-arid region, large rates of evaporation and rainfall irregular and scarce. Thus, the underground dams, become a strategically important resource with a simple and inexpensive technique for storage of water. They act in a positive way in the development of inland cities that suffer from drought, because in addition to exercise a great improvement in the social role of these families, can enjoy the type of soil (silt) and provides water for both irrigation and for human consumption throughout the year. Is therefore essential to its monitoring and studies to assess its effectiveness in accordance with its purposes, along with their wells Amazons, as can occur in conditions of physical degradation, chemical and microbiological appropriate, according to the Ordinance No 518/04 Ministry of Health, however, the proposed work aims to analyze the underground dams in the municipality of Sierra Negra North-RN (semi-arid region) as to their uses and their influences on the quality and quantity of water in periods of drought and rain. Analyzing monthly these parameters: determination of pH, conductivity, calcium, magnesium, sodium, potassium, chloride, sulfate, RAS (sodium adsorption ratio), turbidity, total iron, nitrite, nitrate, total dissolved solids (STD), bicarbonate (HCO3), fecal coliform and pesticides compared to the standards allowed by the Ordinance in force for quality for human consumption. While at the risk of salinity and sodicity on the model proposed by the United Salinity Laboratory (USSL). Although efficient, it was found that results varied annually on water quality which may influence their specific uses, whether or irrigation water supply in the city