982 resultados para Fluid-memory models
Resumo:
The effect of intraseptal injections of lidocaine before a first or a second session in the elevated plus-maze, in a test-retest paradigm, was investigated. In addition to gross session analyses, a minute-by-minute analysis of the sessions was used to evaluate both anxiety and memory. Lidocaine injections before the test session produced increases in the frequency of entries, time spent and distance run in the open arms without affecting activity occurring in the closed arms. During the retest session, saline- and lidocaine-treated rats exhibited increased indices of anxiety and lidocaine-treated rats exhibited decreased closed-arm entries. The minute-by-minute analysis showed a faster decrease in anxiety-related behaviors during the test session by saline- than by lidocaine-treated rats and a significant decrease in closed-arm exploration by saline-treated rats, but not by lidocaine-treated ones. Lidocaine injection before the retest session produced increases in the frequency of entries, time spent and distance run in the open arms in the second session when compared with saline-treated rats. Minute-by-minute analysis showed an increase in the time spent in the open arms by lidocaine animals at the beginning of the retest session in comparison to saline animals and a significant decrease in closed-arm exploration by both groups. These results suggest that inactivation of the medial septum by lidocaine affects the expression of unconditioned and conditioned forms of anxiety in the elevated plus-maze and, in a lesser way, the acquisition and retention of spatial information. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The inferior colliculus (IC) together with the dorsal periaqueductal gray (dPAG), the amygdala and the medial hypothalamus make part of the brain aversion system, which has mainly been related to the organization of unconditioned fear. However, the involvement of the IC and dPAG in the conditioned fear is still unclear. It is certain that GABA has a regulatory role on the aversive states generated and elaborated in these midbrain structures. In this study, we evaluated the effects of injections of the GABA-A receptor agonist muscimol (1.0 and 2.0 nmol/0.2 mu L) into the IC or dPAG on the freezing and fear-potentiated startle (FPS) responses of rats submitted to a context fear conditioning. Intra-IC injections of muscimol did not cause any significant effect on the FPS or conditioned freezing but enhanced the startle reflex in non-conditioned animals. In contrast, intra-dPAG injections of muscimol caused significant reduction in FPS and conditioned freezing without changing the startle reflex in non-conditioned animals. Thus, intra-dPAG injections of muscimol produced the expected inhibitory effects on the anxiety-related responses, the FPS and the freezing whereas these injections into the IC produced quite opposite effects suggesting that descending inhibitory pathways from the IC, probably mediated by GABA-A mechanisms, exert a regulatory role on the lower brainstem circuits responsible for the startle reflex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
We construct the Drinfeld twists ( factorizing F-matrices) of the gl(m-n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the F-matrix ( the F-basis). We resolve the hierarchy of the nested Bethe vectors in the F-basis for the gl(m-n) supersymmetric model.
Resumo:
We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.
Resumo:
The neonatal hippocampus lesion thought to model schizophrenia should show the same modifications in behavioural tests as other models, especially pharmacological models. namely decreased latent inhibition, blocking and overshadowing. The present study is set out to evaluate overshadowing in order to complement our previous studies, which had tested latent inhibition. ""Overshadowing"" refers to the decreased conditioning that occurs when the to-be-conditioned stimulus is combined with another stimulus at the conditioning stage. We used the same two Pavlovian conditioning paradigms as in our previous works, namely conditioned taste aversion (CTA) and conditioned emotional response (CER). A sweet taste overshadowed a salty conditioned stimulus, and a tone overshadowed a flashing light. Totally different stimuli were used to counter possible sensory biases. The protocols were validated with two groups of Sprague Dawley rats. The same two protocols were then applied to a cohort of rats whose ventral hippocampus had been destroyed when they were 7 days old. Only rats with extended ventral hippocampus lesions were included. The overall effect of Pavlovian conditioning was attenuated, significantly so in the conditioned emotional response paradigm, but overshadowing appeared not to be modified in either the conditioned emotional response or the conditioned taste aversion paradigm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
Objective. We sought to evaluate the effects of immunosuppressant drugs (corticosteroid, cyclosporine [CsA], and tacrolimus [Tac]) on liver regeneration in growing animals submitted to 70% hepatectomy. Materials and Methods. Newborn and weaning rats were submitted to 70% hepatectomy receiving separately methylprednisolone, CsA, or Tac. All animals were sacrificed 24 hours after the procedure. The remnant liver lobes were subjected to histomorphometric analyses with determination of hepatocyte mitotic index. Results., Administration of immunosuppressants did not change the mitotic index of the regenerating liver in newborn animals. In weaning rats, methylprednisolone reduced the mitotic index (P = .01) and Tac caused a greater increase in this rate (P = .001). CsA had no effect on mitotic index. The number of hepatocyte mitoses in newborn animal livers was greater than that in weaning animal livers (P = .001). Conclusion. In situations in which intense, fast processes of liver regeneration are crucial, the advantages of the use of Tac must be considered, such as in pediatric transplant patients.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.