890 resultados para Finite-element-analysis
Resumo:
Ground deformation provides valuable insights on subsurface processes with pattens reflecting the characteristics of the source at depth. In active volcanic sites displacements can be observed in unrest phases; therefore, a correct interpretation is essential to assess the hazard potential. Inverse modeling is employed to obtain quantitative estimates of parameters describing the source. However, despite the robustness of the available approaches, a realistic imaging of these reservoirs is still challenging. While analytical models return quick but simplistic results, assuming an isotropic and elastic crust, more sophisticated numerical models, accounting for the effects of topographic loads, crust inelasticity and structural discontinuities, require much higher computational effort and information about the crust rheology may be challenging to infer. All these approaches are based on a-priori source shape constraints, influencing the solution reliability. In this thesis, we present a new approach aimed at overcoming the aforementioned limitations, modeling sources free of a-priori shape constraints with the advantages of FEM simulations, but with a cost-efficient procedure. The source is represented as an assembly of elementary units, consisting in cubic elements of a regular FE mesh loaded with a unitary stress tensors. The surface response due to each of the six stress tensor components is computed and linearly combined to obtain the total displacement field. In this way, the source can assume potentially any shape. Our tests prove the equivalence of the deformation fields due to our assembly and that of corresponding cavities with uniform boundary pressure. Our ability to simulate pressurized cavities in a continuum domain permits to pre-compute surface responses, avoiding remeshing. A Bayesian trans-dimensional inversion algorithm implementing this strategy is developed. 3D Voronoi cells are used to sample the model domain, selecting the elementary units contributing to the source solution and those remaining inactive as part of the crust.
Resumo:
Osteoporosis is one of the major causes of mortality among the elderly. Nowadays, areal bone mineral density (aBMD) is used as diagnostic criteria for osteoporosis; however, this is a moderate predictor of the femur fracture risk and does not capture the effect of some anatomical and physiological properties on the bone strength estimation. Data from past research suggest that most fragility femur fractures occur in patients with aBMD values outside the pathological range. Subject-specific finite element models derived from computed tomography data are considered better tools to non-invasively assess hip fracture risk. In particular, the Bologna Biomechanical Computed Tomography (BBCT) is an In Silico methodology that uses a subject specific FE model to predict bone strength. Different studies demonstrated that the modeling pipeline can increase predictive accuracy of osteoporosis detection and assess the efficacy of new antiresorptive drugs. However, one critical aspect that must be properly addressed before using the technology in the clinical practice, is the assessment of the model credibility. The aim of this study was to define and perform verification and uncertainty quantification analyses on the BBCT methodology following the risk-based credibility assessment framework recently proposed in the VV-40 standard. The analyses focused on the main verification tests used in computational solid mechanics: force and moment equilibrium check, mesh convergence analyses, mesh quality metrics study, evaluation of the uncertainties associated to the definition of the boundary conditions and material properties mapping. Results of these analyses showed that the FE model is correctly implemented and solved. The operation that mostly affect the model results is the material properties mapping step. This work represents an important step that, together with the ongoing clinical validation activities, will contribute to demonstrate the credibility of the BBCT methodology.
Resumo:
Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (p<0.05). Data were transposed to a finite element model of a dental implant-supported restoration. Models were obtained varying abutment material (Ti and Zr) and FCs recorded (Bf, Pel, and Ctrl). Maximum and shear stress were calculated for bone and equivalent von Misses for prosthetic components. Data were analyzed using two-way ANOVA (p<0.05) and percentage of contribution for each condition (material and FC) was calculated. FC significant differences were observed between Ti-Ti and Ti-Zr for Ctrl and Bf groups, with lower values for Ti-Zr (p<0.05). Within each material group, Ti-Ti differed between all treatments (p<0.05) and for Ti-Zr, only Pel showed higher values compared with Ctrl and Bf (p<0.05). FC contributed to 89.83% (p<0.05) of the stress in the screw, decreasing the stress when the FC was lower. FC resulted in an increase of 59.78% of maximum stress in cortical bone (p=0.05). It can be concluded that the shift of the FC due to the presence of Pel or Bf is able to jeopardize the biomechanical behavior of a single implant-supported restoration.
Resumo:
This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.
Resumo:
This work uses crystal plasticity finite element simulations to elucidate the role of elastoplastic anisotropy in instrumented indentation P-h(s) curve measurements in face-centered Cubic (fcc) crystals. It is shown that although the experimental fluctuations in the loading stage of the P-h(s) curves can be attributed to anisotropy, the variability in the unloading stage of the experiments Is much greater than that resulting from anisotropy alone. Moreover, it is found that the conventional procedure used to evaluate the contact variables ruling the unloading P-h(s) curve introduces all uncertainty that approximates to the more fundamental influence of anisotropy. In view of these results, a robust procedure is proposed that uses contact area measurements in addition to the P-h(s) curves to extract homogenized J(2)-Plasticity-equivalent mechanical properties from single crystals.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.
Resumo:
This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rubber and elastic foams. A Von Mises truss with two bars made by different materials is analyzed to show the accuracy of this methodology.
Resumo:
A geometrical approach of the finite-element analysis applied to electrostatic fields is presented. This approach is particularly well adapted to teaching Finite Elements in Electrical Engineering courses at undergraduate level. The procedure leads to the same system of algebraic equations as that derived by classical approaches, such as variational principle or weighted residuals for nodal elements with plane symmetry. It is shown that the extension of the original procedure to three dimensions is straightforward, provided the domain be meshed in first-order tetrahedral elements. The element matrices are derived by applying Maxwell`s equations in integral form to suitably chosen surfaces in the finite-element mesh.
Resumo:
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/E(i) (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, E(r)/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/delta(max) (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - delta) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/E(i), from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, A(c), and lower than 5% in the ratio H/E(r). However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/E(i), the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio delta(e)/delta(max), where delta(e) is the point corresponding to zero load of a straight line with slope S from the point (P(max), delta(max)), varied less than 5% with the ratio E/E(i). Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon`s equation, did not reveal the necessity of correction with the ratio E/E(i). The most affected parameter in the indentation curve, as a consequence of the indentation deformation, was the ratio between the residual indentation depth after complete unloading and the maximum indenter displacement, delta(r)/delta(max) (up to 26%), but this variation did not significantly decrease the capability to estimate hardness and elastic modulus based on the ratio of the residual indentation depth to maximum indentation depth, h(r)/h(max). In general, the results confirm the convenience of the use of the reduced modulus in the spherical instrumented indentation tests.
Resumo:
The present work presents the measurements of the magnetic Barkhausen noise (MBN) in ASTM 36 steel samples around a pit under plastic deformation. The contour maps obtained from these Barkhausen noise measurements are compared with the finite element analysis of the ideal plastic deformation. Also, a parameter of the Barkhausen signal to detect the plastic deformation around the pit in ASTM 36 steel is obtained. Additionally to that, we propose another MBN parameter to estimate the pit width using the Barkhausen noise. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.
Resumo:
Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.
Resumo:
This paper presents first material tests on HDPE and PVC, and subsequently impact tests on plates made of the same materials. Finally, numerical simulations of the plate impact tests are compared with the experimental results. A rather comprehensive series of mechanical material tests were performed to disclose the behaviour of PVC and HDPE in tension and compression. Quasi-static tests were carried out at three rates in compression and two in tension. Digital image correlation. DIC, was used to measure the in-plane strains, revealing true stress-strain curves and allowing to analyze strain-rate sensitivity and isotropy of Poisson`s ratio. In addition, dynamic compression tests were carried out in a split-Hopkinson pressure bar. Quasi-static and dynamic tests were also performed on clamped plates made of the same PVC and HDPE materials, using an optical technique to measure the full-field out-of-plane deformations. These tests, together with the material data, were used for comparative purposes of a finite element analysis. A reasonable agreement between experimental and numerical results was achieved. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A key issue in the design of tyres is their capability to sustain intense impact loads. Hence, the development of a reliable experimental data basis is important, against which numerical models can be compared. Experimental data on tyre impact in the open literature is somewhat rare. In this article, a specially design rig was developed for tyre impact tests. It holds the test piece in a given position, allowing a drop mass with a round indenter to hit pressurised tyres with different impact energies. A high-speed camera and a laser velocimeter were used to track the impact event. From the laser measurement it was possible to obtain the impact force and the local indentation. A finite element study was then conducted using material properties from the open literature. By comparing the experimental measurements with the numerical results, it became evident that the model was capable of predicting the major features of the impact of a mass on a tyre. This model is therefore of value for the assessment of the performance of a tyre in extreme cases of mass impact. (C) 2009 Elsevier Ltd. All rights reserved.