989 resultados para FEB
Resumo:
A polarization-insensitive semiconductor optical amplifier (SOA) with a very thin active tensile-strained InGaAs bulk has been fabricated. The polarization sensitivity of the amplifier gain is less than 1 dB over both the entire range of driving current and the 3 dB optical bandwidth of more than 80 nm. For optical signals of 1550 nm wavelength, the SOA exhibits a high saturation output power +7.6 dBm together with a low noise figure of 7.5 dB, fibre-to-fibre gain of 11.5 dB, and low polarization sensitivity of 0.5 dB. Additionally, at the gain peak 1520 nm, the fibre-to-fibre gain is measured to be 14.1 dB.
Resumo:
Epitaxial growth of Zn-doped InGaAs on InP substrates has been carried out at 550degreesC by LP-MOCVD. Hole concentration as high as 6 x 10(19)cm(-3) has been achieved at the H-2 flow rate of 20 sccm through DEZn bubbler. The lattice constant of Zn-doped InGaAs was found to be dependent on the flow rate of DEZn, and the tensile strain mismatch increases with increasing H-2 flow rate of DEZn. The negative lattice mismatch of heavily Zn-dopped InGaAs may be due to, the small covalent bonding radius of zinc and the combination of butane from ethyl of DEZn,and TEGa. And the latter accelerates the pyrolysis of TEGa, which is the dominant mechanism in determining the negative mismatch of Zn-doped InGaAs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A gain measurement technique, based on Fourier series expansion of periodically extended single fringe of the amplified spontaneous emission spectrum, is proposed for Fabry-Perot semiconductor lasers. The underestimation of gain due to the limited resolution of the measurement system is corrected by a factor related to the system response function. The standard deviations of the gain-reflectivity product under low noise conditions are analyzed for the Fourier series expansion method and compared with those of the Hakki-Paoli method and Cassidy's method. The results show that the Fourier series expansion method is the least sensitive to noise among the three methods. The experiment results obtained by the three methods are also presented and compared.
Resumo:
Single-mode condition for silicon rib waveguides with trapezoidal cross-section was obtained using a numerical method based on imaginary-distance beam propagation method with non-uniform discretization. Both quasi-transverse-electric and quasi-transverse-magnetic modes were investigated. Simulated single-mode condition is given by a modified equation. Comparison with reported results shows that the Marcatili's method is in a better agreement with our results. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We report on improved electrical properties of lead zirconate titanate (PZT) film deposited on titanium metal foil using nitrogen annealing. After nitrogen annealing of the PZT capacitors, symmetric capacitance-voltage (C-V) characteristics, higher dielectric constant and breakdown field, less change of dielectric constant with frequency, lower dielectric loss and leakage current are obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The photoluminescence from self-assembled long-wavelength InAs/GaAs quantum dots was investigated at 15 K under hydrostatic pressure up to 9 GPa. Photoemission from both the ground and the first excited states in large InAs dots was observed. The pressure coefficients of the two emissions were 69 and 72 meV/GPa, respectively. A nonlinear elasticity theory was used to interpret the significantly small pressure coefficients of the large dots. The sequential quenching of the ground and the excited state emissions with increasing pressure suggests that the excited state emissions originate from the optical transitions between the first excited electron states and the first excited hole states. (C) 2004 American Institute of Physics.
Resumo:
Zn2SiO4:Mn2+, Zn2SiO4:Eu3+ and Zn2SiO4:Mn2+ Eu3+ phosphors were prepared by a sol-gel process and their luminescence spectra were investigated. The emission bands from intra-ion transitions of Mn2+ and Eu3+ samples were studied as a function of pressure. The pressure coefficient of Mn2+ emission was found to be -25.3 +/- 0.5 and -28.5 +/- 0.9 meV/GPa for Zn2SiO4:Mn2+ and Zn2SiO4:Mn2+ Eu3+, respectively. The Eu3+ emission shows only weak pressure dependence. The pressure dependences of the Mn2+ and Eu3+ emissions in Zn2SiO4:Mn2+ Eu3+ are slightly different from that in Zn2SiO4:Mn2+ and Zn2SiO4:Eu3+ samples, which can be attributed to the co-doping of Mn2+ and Eu3+ ions. The Mn2+ emission in the two samples, however, exhibits analogous temperature dependence and similar luminescence lifetimes, indicating no energy transfer from Mn2+ to Eu3+ occurs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In order to clarify the major factors having confined the efficiencies of as-prepared crystalline silicon thin film (CSiTF) solar cells on the SSP (silicon sheets from powder) ribbons, QE (quantum efficiency) and Suns-V-oc study were performed on the epitaxial CSiTF solar cells fabricated on the SSP ribbons, the SSP ribbons after surface being zone melting recrystallized (ZMR) and single crystalline silicon (sc-Si) substrates. The results show that the epi-layers deposited on the SSP ribbons have rough surfaces, which not only increases the diffusion reflectance on the surfaces but also makes the anti-reflection coatings become structure-loosened, both of which would deteriorate the light trapping effect; in addition, the epi-layers deposited on the SSP ribbons possess poor crystallographic quality, so the heavy grain boundary (GB) recombination limits the diffusion length of the minority carriers in the epi-layers, which makes the as-prepared CSiTF solar cells suffer the worse spectra response at long-wavelength range. Nearly all the dark characteristic parameters of the CSiTF solar cells are far away from the ideal values. The performances of the CSiTF solar cells are especially affected by too high I-02 (the dark saturation current of space charge region) values and too low R-sh (parallel resistance) values. The higher 102 values are mainly caused by the heavy GB recombination resulting from the poor crystallographic qualities of the silicon active layers in the space charge regions, while the lower R-sh values are attributed to the electrical leakage at the un-passivated PN junction or solar cell edges after the solar cells are cut by the laser scriber.
Resumo:
State-filling effects of the exciton in a In0.65Al0.35As/Al0.4Ga0.6As quantum dot array are observed by quantum dot array photolumineseence at a sample temperature of 77 K. The exciton emission at low excitation density is dominated by the radiative recombination of the states in the s shell and at high excitation density the emission mainly results from the radiative recombination of the exciton state in the p shell. The spectral interval between the states in the s and p shells is about 30-40 mcV. The time resolved photoluminescence shows that the decay time of exciton states in the p shell is longer than that of exciton states in the s shell, and the emission intensity of the exciton state in the p shell is superlinearly dependent on excitation density. Furthermore, electron-hole liquid in the quantum dot array is observed at 77 K, which is a much higher temperature than that in bulk. The emission peak of the. recombination, of electron-hole liquid has an about 200 meV redshift from the exciton fluorescence. Two excitation density-dependent emission peaks at 1.56 and 1.59 eV are observed, respectively, which result from quantum confinement effects in QDs. The emission intensity of electron-hole liquid is directly proportional to the cubic of excitation densities and its decay time decreases significantly at the high excitation density.
Resumo:
An optimal concentration of the etching solution for deep etching of silicon, including 3% tetramethyl ammonium hydroxide and 0.3% (NH4)(2)S2O8, was achieved in this paper. For this etching solution, the etching rates of silicon and silicon dioxide were about 1.1 mu m(.)min(-1) and 0.5 nm(.)min(-1), respectively. The etching ratio between (100) and (111) planes was about 34:1, and the etched surface was very smooth.
Resumo:
With the aim of investigating the possible integration of optoelectronic devices, epitaxial GaN layers have been grown on Si(Ill) semiconductor-on-insulator (SOI) and on Si/CoSi2/Si(111) using metalorganic chemical vapor deposition. The samples are found to possess a highly oriented wurtzite structure, a uniform thickness, and abrupt interfaces. The epitaxial orientation is determined as GaN(0001)//Si(111), GaN[1120]//Si[110], and GaN[1010]//Si[112], and the GaN layer is tensilely strained in the direction parallel to the interface. According to Rutherford backscattering/channeling spectrometry and (0002) rocking curves, the crystalline quality of GaN on Si(111) SOI is better than that of GaN on silicide. Room-temperature photoluminescence of GaN/SOI reveals a strong near-band-edge emission at 368 nm (3.37 eV) with a full width at half-maximum of 59 meV. (c) 2005 American Institute of Physics.
Resumo:
We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.
Resumo:
In order to effectively improve the classification performance of neural network, first architecture of fuzzy neural network with fuzzy input was proposed. Next a cost function of fuzzy outputs and non-fuzzy targets was defined. Then a learning algorithm from the cost function for adjusting weights was derived. And then the fuzzy neural network was inversed and fuzzified inversion algorithm was proposed. Finally, computer simulations on real-world pattern classification problems examine the effectives of the proposed approach. The experiment results show that the proposed approach has the merits of high learning efficiency, high classification accuracy and high generalization capability.
Resumo:
Improved methods of reduction of bend loss of silicon-on-insulator waveguides were simulated and analyzed by means of effective index method (EIM) and two dimensional beam propagation method (2D-BPM). The simulation results indicate that two different methods, one of which are introducing an offset at the junction of two waveguides and the other is etching groove at the outside of bend waveguide, can decrease bend loss. And the later one is more effective. Meanwhile, experiments validate them. By etching groove, the insertion loss of bend waveguide of R = 16mm, transverse displacement 70mum was decreased 5dB. And its bend loss was almost eliminated.