900 resultados para FAST
Resumo:
Persilylation of nucleoside hydroxyls was effected in quantitative yields under solvent-free conditions using a ball mill. In addition, one-pot persilylation and acylation of cytidine was performed as an exemplar reaction demonstrating the utility of solvent-free approaches to nucleoside chemistry.
Resumo:
In the identification of complex dynamic systems using fuzzy neural networks, one of the main issues is the curse of dimensionality, which makes it difficult to retain a large number of system inputs or to consider a large number of fuzzy sets. Moreover, due to the correlations, not all possible network inputs or regression vectors in the network are necessary and adding them simply increases the model complexity and deteriorates the network generalisation performance. In this paper, the problem is solved by first proposing a fast algorithm for selection of network terms, and then introducing a refinement procedure to tackle the correlation issue. Simulation results show the efficacy of the method.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
This paper investigates the center selection of multi-output radial basis function (RBF) networks, and a multi-output fast recursive algorithm (MFRA) is proposed. This method can not only reveal the significance of each candidate center based on the reduction in the trace of the error covariance matrix, but also can estimate the network weights simultaneously using a back substitution approach. The main contribution is that the center selection procedure and the weight estimation are performed within a well-defined regression context, leading to a significantly reduced computational complexity. The efficiency of the algorithm is confirmed by a computational complexity analysis, and simulation results demonstrate its effectiveness. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Solid-phase oligonucleotide conjugation by nitrile oxide-alkyne click cycloaddition chemistry has been successfully demonstrated; the reaction, compatible with all nucleobases, requires no metal catalyst and proceeds under physiological conditions.
Resumo:
This article introduces the recent sound works of Heidi Fast, a Finnish voice and performance artist. Fast’s creative practice operates between art and philosophy, and articulates several ‘zones of becoming’: what Fast designates as ‘the clinical’, ‘the virtual’ and ‘vocal thought-material’. Using a methodology of routing, the article shows how these zones emerge as aesthetic, ethical and political concerns within Fast’s work. Since 2005, Fast’s sound works have variously taken shape as miniature concerts, social sculptures, imaginary soundscapes and environmental music performances. Drawing upon the writings of theorists who have helped shape her practice, this article argues that Fast uses sound and voice to propose an ‘actualising philosophy’. This philosophy actualises virtualities (unrealised potentials), affecting transformative shifts through tiny mutations in perceptions and behaviours.
Resumo:
The collimating effect of self-generated magnetic fields on fast-electron transport in solid aluminium targets irradiated by ultra-intense, picosecond laser pulses is investigated in this study. As the target thickness is varied in the range of 25 mu m to 1.4 mm, the maximum energies of protons accelerated from the rear surface are measured to infer changes in the fast-electron density and therefore the divergence of the fast-electron beam transported through the target. Purely ballistic spreading of the fast-electrons would result in a much faster decrease in the maximum proton energy with increasing target thickness than that measured. This implies that some degree of 'global' magnetic pinching of the fast-electrons occurs, particularly for thick (>400 mu m) targets. Numerical simulations of electron transport are in good agreement with the experimental data and show that the pinching effect of the magnetic field in thin targets is significantly reduced due to disruption of the field growth by refluxing fast-electrons.