950 resultados para Euler equations
Resumo:
A contractive method for computing stationary solutions of intertemporal equilibrium models is provide. The method is is implemented using a contraction mapping derived from the first-order conditions. The deterministic dynamic programming problem is used to illustrate the method. Some numerical examples are performed.
Resumo:
Consumption is an important macroeconomic aggregate, being about 70% of GNP. Finding sub-optimal behavior in consumption decisions casts a serious doubt on whether optimizing behavior is applicable on an economy-wide scale, which, in turn, challenge whether it is applicable at all. This paper has several contributions to the literature on consumption optimality. First, we provide a new result on the basic rule-of-thumb regression, showing that it is observational equivalent to the one obtained in a well known optimizing real-business-cycle model. Second, for rule-of-thumb tests based on the Asset-Pricing Equation, we show that the omission of the higher-order term in the log-linear approximation yields inconsistent estimates when lagged observables are used as instruments. However, these are exactly the instruments that have been traditionally used in this literature. Third, we show that nonlinear estimation of a system of N Asset-Pricing Equations can be done efficiently even if the number of asset returns (N) is high vis-a-vis the number of time-series observations (T). We argue that efficiency can be restored by aggregating returns into a single measure that fully captures intertemporal substitution. Indeed, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Pricing Equation, since the latter is a linear function of individual returns. This forms the basis of a new test of rule-of-thumb behavior, which can be viewed as testing for the importance of rule-of-thumb consumers when the optimizing agent holds an equally-weighted portfolio or a weighted portfolio of traded assets. Using our setup, we find no signs of either rule-of-thumb behavior for U.S. consumers or of habit-formation in consumption decisions in econometric tests. Indeed, we show that the simple representative agent model with a CRRA utility is able to explain the time series data on consumption and aggregate returns. There, the intertemporal discount factor is significant and ranges from 0.956 to 0.969 while the relative risk-aversion coefficient is precisely estimated ranging from 0.829 to 1.126. There is no evidence of rejection in over-identifying-restriction tests.
Resumo:
Trabalho apresentado no Congresso Nacional de Matemática Aplicada à Indústria, 18 a 21 de novembro de 2014, Caldas Novas - Goiás
Resumo:
This work is divided in two parts. In the first part we develop the theory of discrete nonautonomous dynamical systems. In particular, we investigate skew-product dynamical system, periodicity, stability, center manifold, and bifurcation. In the second part we present some concrete models that are used in ecology/biology and economics. In addition to developing the mathematical theory of these models, we use simulations to construct graphs that illustrate and describe the dynamics of the models. One of the main contributions of this dissertation is the study of the stability of some concrete nonlinear maps using the center manifold theory. Moreover, the second contribution is the study of bifurcation, and in particular the construction of bifurcation diagrams in the parameter space of the autonomous Ricker competition model. Since the dynamics of the Ricker competition model is similar to the logistic competition model, we believe that there exists a certain class of two-dimensional maps with which we can generalize our results. Finally, using the Brouwer’s fixed point theorem and the construction of a compact invariant and convex subset of the space, we present a proof of the existence of a positive periodic solution of the nonautonomous Ricker competition model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem
Resumo:
Among the many methodological resources that the mathematics teacher can use in the classroom, we can cite the History of Mathematics which has contributed to the development of activities that promotes students curiosity about mathematics and its history. In this regard, the present dissertation aims to translate and analyze, mathematically and historically, the three works of Euler about amicable numbers that were writed during the Eighteenth century with the same title: De numeris amicabilibus. These works, despite being written in 1747 when Euler lived in Berlin, were published in different times and places. The first, published in 1747 in Nova Acta Eruditorum and which received the number E100 in the Eneström index, summarizes the historical context of amicable numbers, mentions the formula 2nxy & 2nz used by his precursors and presents a table containing thirty pairs of amicable numbers. The second work, E152, was published in 1750 in Opuscula varii argument. It is the result of a comprehensive review of Euler s research on amicable numbers which resulted in a catalog containing 61 pairs, a quantity which had never been achieved by any mathematician before Euler. Finally, the third work, E798, which was published in 1849 at the Opera postuma, was probably the first among the three works, to be written by Euler
Resumo:
The stability of multistep second derivative methods for integro-differential equations is examined through a test equation which allows for the construction of the associated characteristic polynomial and its region of stability (roots in the unit circle) at a proper parameter space. (c) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we investigate the relationships between different concepts of stability in measure for the solutions of an autonomous or periodic neutral functional differential equation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite (China Brazil Earth Resources Satellite). The real-time estimator used in this work for attitude determination is the Unscented Kalman Filter. This filter is a new alternative to the extended Kalman filter usually applied to the estimation and control problems of attitude and orbit. This algorithm is capable of carrying out estimation of the states of nonlinear systems, without the necessity of linearization of the nonlinear functions present in the model. This estimation is possible due to a transformation that generates a set of vectors that, suffering a nonlinear transformation, preserves the same mean and covariance of the random variables before the transformation. The performance will be evaluated and analyzed through the comparison between the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.