984 resultados para Ellen Louise Payson
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Serotonergic hypofunction is associated with a depressive mood state, an increased drive to eat and preference for sweet (SW) foods. High-trait anxiety individuals are characterised by a functional shortage of serotonin during stress, which in turn increases their susceptibility to experience a negative mood and an increased drive for SW foods. The present study examined whether an acute dietary manipulation, intended to increase circulating serotonin levels, alleviated the detrimental effects of a stress-inducing task on subjective appetite and mood sensations, and preference for SW foods in high-trait anxiety individuals. Thirteen high- (eleven females and two males; anxiety scores 45·5 (sd 5·9); BMI 22·9 (sd 3·0)kg/m2) and twelve low- (ten females and two males; anxiety scores 30·4 (sd 4·8); BMI 23·4 (sd 2·5) kg/m2) trait anxiety individuals participated in a placebo-controlled, two-way crossover design. Participants were provided with 40 g α-lactalbumin (LAC; l-tryptophan (Trp):large neutral amino acids (LNAA) ratio of 7·6) and 40 g casein (placebo) (Trp:LNAA ratio of 4·0) in the form of a snack and lunch on two test days. On both the test days, participants completed a stress-inducing task 2 h after the lunch. Mood and appetite were assessed using visual analogue scales. Changes in food hedonics for different taste and nutrient combinations were assessed using a computer task. The results demonstrated that the LAC manipulation did not exert any immediate effects on mood or appetite. However, LAC did have an effect on food hedonics in individuals with high-trait anxiety after acute stress. These individuals expressed a lower liking (P = 0·012) and SW food preference (P = 0·014) after the stressful task when supplemented with LAC.
Resumo:
Taking an 'action genre' approach (Lemke, 199**) this paper analyses representational strategies of three genres of photography: press photography, photojournalism and documentary photography. While there has been much written on editorial photography, there is no organised body of scholarship that distinguishes between these three very different modes of of editorial photography.
Resumo:
This paper introduces three approaches to unlocking the degrees of “truth” within photographs published in newspapers by exploring the genres of Press photography, Photojournalism and Documentary photography. This is brought into context through a study of photographs appearing in The Australian newspaper during 2001 when the Norwegian freighter, the MV Tampa, rescued boat people whose vessel had sunk off the West Australian coast in 2001, and two months later the Children Overboard incident occurred.
Resumo:
In 2007 I travelled to Mozambique and Tanzania to photographically document the work undertaken by a group of Australians who are working to bring a self sufficient lifestyle back to the HIV Aids stricken communities of Africa. University of Queensland veterinary researchers have developed a vaccination that can eradicate disease from local rural poultry. The Kyeema Foundation is working in country to supply this vaccine to families battling HIV AIDS and to teach local residents how to successfully implement it. QUT, AusAID and the Kyeema Foundation funded the trip.
Resumo:
In December 2008 I exhibited a series of photographs in the French village, Sarlat. Funded by Queensland University of Technology, it was the opportunity to return to this village and exhibit the photographs I captured during an earlier visit in 2005. Spending time in this village in 2005, I photographed lifestyles of local residents living in the area. I produced a body of work that includes black and white street photography and environmental portraits of the residents in their homes.
Resumo:
Street photography is the medium used to explore cultural identities within various communities within this project. With no communication possible through language, it is left to the visual forms of communication to interact with a new environment.
Resumo:
As a woman traveling from one of the world’s youngest nations, Australia, my aim was to examine if western ideology had infiltrated life styles of Chinese women since the “opening up” of China in the 1980s. It is through a metaphoric examination of the contents of women’s handbags – traditionally a very secretive environment – that I sought to investigate aspects of a gender-based economic and social basis of China in 1999.