933 resultados para Disposal
Resumo:
Systematic studies of the changes in dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented. The amount of sewage disposal, use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years. Moreover, the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s, and then to phosphorus after the 1990s. In addition, changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure. The half saturation constant (K (s)) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years. Cell abundance percentages of dominant phytoplankton species with high K (s) values for phosphorus and low K (s) values for nitrogen have decreased since the 1980s, while those of dominant phytoplankton species with low K (s) values for phosphorus and high K (s) values for nitrogen increased during this period.
Resumo:
本文针对排爆机器人手臂多关节联动控制的需要,开发了一种具有高集成度的基于C8051单片机和CAN总线的运动控制卡。介绍了运动控制卡的原理及实施方案,同时给出了运动控制卡在机器人平台的应用实例。在排爆机器人平台上的应用表明该运动控制卡具有较高的精度及很好的可靠性和实时性。
Resumo:
为提高反恐防暴机器人对非结构环境的适应能力,设计出了一种具有良好的机动性能和转向性能的新型轮—腿—履带复合移动机构.通过机器人机构分析与本体的稳定性分析,论证了其结构设计的可行性及好的稳定性.
Resumo:
研制了一种有重力约束的三索控制的柔索吊床机构来模拟船体海面上的运动。为了解三柔索吊床机构的运动特性 ,对其进行了运动学建模与仿真。仿真结果表明 ,台面倾角在 0°~ 30 0°变化时 ,台面不碰撞立柱 ,且柔索伸缩长度与台面倾斜角度接近于线性变化。本文所做的工作对吊床平台避免撞击立柱、缩小吊床立柱布置空间、提高空间利用率 ,以及为吊床的运动控制提供了理论依据
Resumo:
西方国家早在20世纪60年代就开始采用防暴机器人处理爆炸物。自从9.11事件后,国际社会恐怖活动更是愈演愈烈,许多国家相继对此给予了高度重视。反恐防暴机器人可应用于核工业、军事、燃化、铁路、公安、武警等部门,代替人在危险、恶劣、有害环境中执行探查、排除或销毁爆炸物、消防、抢救人质以及与恐怖分子对抗等任务。本项目依托课题由最初的“危险作业机器人”到现在的“反恐防暴机器人的产业化研究”,由国家“863”计划资金滚动支持。就现有的反恐防暴机器人,存在速度较慢或机动灵活性不强或可靠性不高等不足,现研究出一种新型反恐防暴机器人,目的是在保证适应一定的非结构环境的前提下(适用所有的非结构环境的移动机构设计是不可取的,也是不现实的),提高机器人本体转向性能和移动速度,降低功耗,机构简单化,同时在硬件与软件设计时采取一些相应的措施,提高其在实际应用环境中的可靠性和抗干扰能力。首先,通过对以往反恐防暴机器人在非结构环境中采用的复合移动机构对比分析研究,提出了一种新型的轮-履带-腿复合移动机构,应用在”灵豹”机器人上。它的特色是移动机构继承了“灵蜥”系列反恐防暴机器人轮与履带移动方式自动切换功能,并且针对“灵蜥”系列机器人轮式移动时,四轮滑动转向灵活性不高、功耗大的问题,提出了三轮式移动机构,在狭小移动空间有着广泛的应用。并对该机器人本体做了运动学分析和稳定性分析,论证了该机构的可行性。其次,根据课题项目研究的需要,在控制方面,主要完成了“灵狐”小型反恐防暴机器人的系统构建与功能实现。通过从事“灵蜥”系列机器人项目开发,积累了一些移动机构设计与分析以及控制系统一些问题解决的实际经验,在“灵狐”控制系统设计过程中,由于采用单片机作为微控制单元,因此着重考虑了提高系统可靠性与抗干扰能力。在“灵狐”机器人样机试验中取得了好的效果,均达到预期目标。
Resumo:
介绍了载人潜水器的构成及推进器的布置,在此基础上导出了载人潜水器的推力分配方程。阐述了载人潜水器的运动控制。最后,将运动控制系统在载人潜水器半物理仿真平台上进行了验证,运动控制效果良好。
Resumo:
介绍了一种新型的固定式烧毁炉系统,该系统主要用于装药量100gTNT当量以下的非金属外壳防步兵地雷以及火工品的烧毁处理。通过PLC的自动控制,实现了烧毁处理过程的自动协调控制;同时,配备了视频监控系统,使烧毁工作更安全可靠。本设计完全满足工艺要求,实际应用中提高了工作效率。
Resumo:
During tunnel constriction the classification of rock mass is widely used in tunnel design and construction. Moreover it offers the base information about tunnel investment and security. The quick classification of rock mass is very important for not delaying tunnel construction. Nowadays the tunnel engineers usually use initial survey files which are obtained by probe drilling to design a tunnel. It brings the problem that initial surrounding rock classification is usually much different from the real condition during the tunnel construction. Because initial surrounding rock lack credibility, it need us to make real time surrounding rock classification during the tunnel construction, and feed back the result to designers and constructors. Therefore, to find a quick wall rock classification method is very important not only for the time limit for a project but also for not delaying tunnel construction. Not all but many tunnels and underground constructions do suffer form collapse during the period of construction. Although accidental collapse in a large project in civil and geotechnical engineering sometimes appears to be a local event, if it occurred, it can bring about casualties, disrupted,production, construction delay, environmental damage, capital cost etc,therefore, it has been a difficult problem ,both in theory and in practice, establishing how to prevent underground structures form collapse and how to handle such an event in case in occurs. It is important to develop effective solutions and technical measures to prevent and control the collapse. According to the tunnel collapse occurred in Cheng De this paper analyze the main collapse mechanism leading to tunnel collapse and summon up the disposal method when collapse happened. It may be useful for tunnel construction in Cheng De in future. This paper is base on tunnel surrounding rock classification and tunnel support tasks during the tunnel construction in Cheng De area. It aims at solving 4 important problems in tunnel design and construction. 1) The relationship between rock rebound strength and rock single axle compression strength. First we go to the face wall and do rebound test on the tunnel face, then we chose some pieces of rock and do point loading test. Form the tests record we try to find the relationship between rock rebound strength and rock single axle compression strength. 2) The relationship between the value [BQ] and the value Q. First in order to obtain the information of rock character, rock strength, degree of weathering, the structure of rock mass, the joint condition, underground water condition and so on, we go to the tunnel face to do field investigation. And then we use two kinds of rock classification method to make surrounding rock classification. Base on the works above, finally we analyze the relationship between the value [BQ] and the value Q. 3) Sum up the mechanism leading to tunnel collapse and it disposal method in Cheng De area According to the tunnel collapse occurred in Cheng De this paper analyze the main reasons leading to the tunnel collapse and sum up the disposal method when collapse happened. 4) Obtain the properties of steel frame grid by numerical simulation. First we establish the 3D numeral model of steel frame grid by ADINA, and then find the mechanics properties by numerical simulation in ADINA. Second Based on the rock mass geological structure model, we established steel frame grid numeral model which is installed in the tunnel by FLAC3D and simulated the progress of tunnel construction. We hope that the support effect in tunnel can be evaluated from the numerical simulation.
Resumo:
Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.
Resumo:
With the continually increase both in the amount of wastewater disposal and in the treatment rate, more and more sewage sludge has been produced. An economic estimate was taken on the different sewage sludge disposal and treatment technologies, and led to the conclusion that compost is an effective way to make sewage sludge harmless, stable and resourceable. Normally, there are several ways to treat sewage sludge, such as landfill, compost, incineration and so on. These technologies will cost 300-1000 Y per ton of sludge. Among those ways, landfill is the cheapest one and operates easily, however, it just postpones the pollution instead of eventually eliminating the pollution; The amount of the sludge will reduce dramatically after incineration, while incineration will take a very high investment in the beginning, at the same time, it's very hard to maintain running; Sewage sludge will be resourceful after composting treantment, thus makes up the treatment cost, makes composting is the most economical way. Compost production is safe when correctly used, compost is a important way to treat sewage sludge. Oxygen is an important control factor in aerobic composting that has great effects on temperature and microorganisms. The gas gathering and transfering system of an online oxygen monitoring system for composting were bettermented to prolong the monitoring system's running period. The oxygen concentration changes in various aerobic composting stage were studied, and conclusions came to that oxygen concentration changes much faster in the oxygen concentration increasing stage than that in the declining stage; the better the aerobic condition is, the sooner the monitoring system starts to work. The minimal oxygen concentration during a ventilation cycle often falls at the beginning, then ascends in the composting period; at the same time, oxygen concentration changes fast in the early composting stage(temperature increasing stage), much slower in the middle stage(continouns thermophilic stage),and seldom changes in the late composting stage(temperature declining stage). With the help of the oxygen realtime-online monitoring system, oxygen concentrations was measured. During the composting period, water contents was analyzed after sampled. It's found that water contents (WC) and Oxygen concentration can both influence the composting process, and the control rule varies in the various composting stages. Essentially, the rule that water and oxygen control the composting process comes from water counterchecks the oxygen transferring to the composting substrate. The most influential factor to the WC and to the oxygen is the components in the composting pile. In the temperature increasing stage, seldom microorganisms exist in the composting pile with low activity, thus oxygen can meet with microorganisms' need, and WC is the dominant factor. In the high temperature (continouns thermophilic) stage, composting process is controlled by WC and oxygen, essentially by WC, at the same time, their influence somehow is not remarkable. In the temperature declining stage, WC and oxygen influence the composting process little. It's also found that the composting process will differ even if under the same components, thus to equably mix the components can avoid WC focusing in some place and let the composting pile to be aerobic. In one sentence, aerobic state is the most important factor in the composting process, suitable bulking material will be useful to the composting control.
Resumo:
A practical and efficient disposal method for hydrodechlormation of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)(2) + i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Wydział Nauk Politycznych i Dziennikarstwa
Resumo:
Wydział Neofilologii: Instytut Językoznawstwa
Resumo:
Wydział Chemii
Resumo:
An investigation of 24 buildings in the Greater Boston Area revealed that one-third (8 of 24) contained caulking materials with polychlorinated biphenyl (PCB) content exceeding 50 ppm by weight, which is the U.S. Environmental Protection Agency (U.S. EPA) specified limit above which this material is considered to be PCB bulk product waste. These buildings included schools and other public buildings. In a university building where similar levels of PCB were found in caulking material, PCB levels in indoor air ranged from 111 to 393 ng/m3; and in dust taken from the building ventilation system, < 1 ppm to 81 ppm. In this building, the U.S. EPA mandated requirements for the removal and disposal of the PCB bulk product waste as well as for confirmatory sampling to ensure that the interior and exterior of the building were decontaminated. Although U.S. EPA regulations under the Toxic Substances Control Act stipulate procedures by which PCB-contaminated materials must be handled and disposed, the regulations apparently do not require that materials such as caulking be tested to determine its PCB content. This limited investigation strongly suggests that were this testing done, many buildings would be found to contain high levels of PCBs in the building materials and potentially in the building environment. The presence of PCBs in schools is of particular concern given evidence suggesting that PCBs are developmental toxins.