961 resultados para Crystallization
Resumo:
This paper presents the study results with glass-ceramics obtained from base glass (MgO-Al2O3- SiO2-Li2O system) with addition of ZrO2 as nucleating agent. The glass was melted at 1650 degrees C for 3 h and at a heating rate of 10 degrees C/min. The molten glass was poured into a graphite mold to obtain monolithic samples and also in water in order to obtain particulate material. Such material was grinded and then pressed by both uniaxial and isostatic pressing methods before being sintered. Both the monolithic and pressed samples were performed under two different conditions of heat treatment so that their nucleation and crystallization occurred. In the first one, the samples were heated to 1100 degrees C with a heating rate of 10 degrees C/min. In the second one, there was an initial heating rate of 10 degrees C/min up to 780 degrees C, which was kept for 5 minutes. After that, the samples were heated to 1100 degrees C at a heating rate of 1 degrees C/min. Microhardness analyses showed that base glass presented values around 7.0 GPa. The glass-ceramics obtained from the powder sintering showed microhardness values lower than those obtained from monolithic samples. The highest hardness values were observed in the samples which were treated with two heating rates, whose values were around 9.2 +/- 0.5 GPa. Moreover, the glass-ceramics which were produced with an only heating rate, presented values around 7.1 +/- 0.2 GPa, very close to those observed in the base glass.
Resumo:
Flash-evaporated GaSb films are analysed using a combination of optical, surface and x-ray diffraction techniques. The effects of thermal annealings on nearly stoichiometric GaSb films are studied.
Resumo:
Thermal annealings of amorphous gallium antimonide films were accompanied using Raman spectroscopy, both for stoichiometric and nonstoichiometric compositions. The films were prepared by flash evaporation on silicon substrates. Structural changes were induced by the heat treatments: an increasing degree of crystallization as a function of the annealing temperature is observed. Sb clusters are found to crystallize before GaSb does, and the dependence of the corresponding Raman peak intensity with the annealing temperature (occurring in two regimes) is explained. A mechanism for the crystallization of the amorphous GaSb is proposed, based on the prior migration of the Sb excess outside the GaSb region to be crystallized. © 1995 American Institute of Physics.
Resumo:
The microstructural behavior of industrial standardized cocoa butter samples and cocoa butter samples from three different Brazilian states is compared. The cocoa butters were characterized by their microstructural patterns, crystallization kinetics and polymorphic habits. The evaluation of these parameters aided in establishing relationships between the chemical compositions and crystallization behavior of the samples, as well as differentiating them in terms of technological and industrial potential for use in tropical regions.
Resumo:
Endoglucanases are enzymes that hydrolyze cellulose and are important components of the cellulolytic complex. In contrast to other members of the complex, they cleave internal beta-1,4-glycosidic bonds in the cellulose polymer, allowing cellulose to be used as an energy source. Since biomass is an important renewable source of energy, the structural and functional characterization of these enzymes is of interest. In this study, endoglucanase III from Trichoderma harzianum was produced in Pichia pastoris and purified. Crystals belonging to the orthorhombic space group P212121, with unit-cell parameters a = 47.54, b = 55.57, c = 157.3 angstrom, were obtained by the sitting-drop vapour-diffusion method and an X-ray diffraction data set was collected to 2.07 angstrom resolution.
Resumo:
Major and trace-element microanalyses of the main minerals from the 610 Ma Pedra Branca Syenite, southeast Brazil, allow inferences on intensive parameters of magmatic crystallization and on the partition of trace-elements among these minerals, with important implications for the petrogenetic evolution of the pluton. Two main syenite types make up the pluton, a quartz-free syenite with tabular alkali feldspar (laminated silica-saturated syenite, LSS, with Na-rich augite + phlogopite + hematite + magnetite + titanite + apatite) and a quartz-bearing syenite (laminated silica-oversaturated syenite, LSO, with scarce corroded plagioclase plus diopside + biotite +/- hornblende + ilmenite magnetite +/- titanite + apatite). Both types share a remarkable enrichment in incompatible elements as K, Ba, Sr, P and LREE. Apatite saturation temperatures of similar to 1060-1090 degrees C are the best estimates of liquidus, whereas the pressure of emplacement, based on Al-in-hornblende barometry, is estimated as 3.3 to 4.8 khan Although both units crystallized under oxidizing conditions, oxygen fugacity was probably higher in LSS, as shown by higher mg# of the mafic minerals and higher hematite contents in Hem-Ilm(ss). In contrast with the Ca-bearing alkali-feldspar from LSO, which hosts most of the whole-rock Sr and Pb, virtually Ca-free alkali-feldspar from LSS hosts similar to 50% of whole-rock Sr and similar to 80% of Pb, the remainder of these elements being shared by apatite, pyroxene and titanite. This contrast reflects a strong crystal-chemical control, whereby a higher proportion of an element with similar ratio and charge (Ca2+) enhances the residence of Sr and Pb in the M-site of alkali feldspar. The more alkaline character of the LSS magma is inferred to have inhibited zircon saturation; Zr + Hf remained in solution until late in the crystallization, and were mostly accommodated in the structure of Ca-Na pyroxene and titanite, which are one order of magnitude richer in these elements compared to the same minerals in LSO, where most of Zr and Hf are inferred to reside in zircon. The REE, Th and U reside mostly in titanite and apatite; D(REE)Tit/Ap raises steadily from 1 to 6 from La to Tb then remains constant up to Lu in the LSO sample; these values are about half as much in the LSS sample, where lower contents of incompatible elements in titanite are attributed to its greater modal abundance and earlier crystallization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Full validation of the electrochemical mechanisms so far postulated as driving force of electric field-assisted non-spontaneous crystallization development in given glasses has suffered experimental restrictions. In this work, we looked into origin of this phenomenon in lead oxyfluoroborate glasses, resulting in beta-PbF2 growth even below the corresponding glass transition temperatures, through achieving a systematic study of not only Pt,Ag/Glass/Ag,Pt- but also Pt,Ag/Glass/YSZ:PbF2/Ag,Pt-type cells, where YSZ:PbF2 represents a two-phase system (formed by Y2O3-doped ZrO2 and PbF2). It is demonstrated that crystallization induction in these glasses involves Pb2+ ions reduction at the cathode, the phenomenon being, however, confirmed only when the F- ions were simultaneously also able to reach the anode for oxidation, after assuring either a direct glass-anode contact or percolation pathways for free fluoride migration across the YSZ:PbF2 mixtures. A further support of this account is that the electrochemically induced beta-PbF2 phase crystallizes showing ramified-like microstructure morphology that arises, accordingly, from development of electroconvective diffusion processes under electric field action.
Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum
Resumo:
The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to homogeneity. The purified protein crystallized in space group P1, with unit-cell parameters a = 72, b = 157, c = 159 angstrom, a = 105, beta = 101, ? = 95 degrees. The resulting crystals diffracted to a maximal resolution of 2.24 angstrom and the structure has been solved by molecular replacement, with 16 monomers in the asymmetric unit. The 16 monomers are arranged into four independent tetramers, in agreement with previous reports demonstrating the tetrameric solution state of PfMDH. The X-ray structure of PfMDH is expected to clarify the differences in catalysis by PfMDH compared with other MDH family members and to provide a basis for the structure-based design of specific PfMDH inhibitors as well as general MDH inhibitors.
Resumo:
Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.562.05 angstrom and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2.
Resumo:
Selenophosphate synthetase (SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the activation of selenide with adenosine 5'-triphosphate (ATP) to generate selenophosphate, the essential selenium donor for selenocysteine synthesis. Recombinant full-length Leishmania major SPS (LmSPS2) was recalcitrant to crystallization. Therefore, a limited proteolysis technique was used and a stable N-terminal truncated construct (ΔN-LmSPS2) yielded suitable crystals. The Trypanosoma brucei SPS orthologue (TbSPS2) was crystallized by the microbatch method using paraffin oil. X-ray diffraction data were collected to resolutions of 1.9 Å for ΔN-LmSPS2 and 3.4 Å for TbSPS2.
Resumo:
Zusammenfassung Um zu einem besseren Verständnis des Prozesses der Biomineralisation zu gelangen, muss das Zusammenwirken der verschiedenen Typen biologischer Makromoleküle, die am Keimbildungs- und Wachstumsprozess der Minerale beteiligt sind, berücksichtigt werden. In dieser Arbeit wird ein neues Modellsystem eingeführt, das aus einem SAM (self-assembled monolayer) mit verschiedenen Funktionalitäten und unterschiedlichen, gelösten Makromolekülen besteht. Es konnte gezeigt werden, dass die Kristallisation von Vaterit (CaCO3) sowie Strontianit (SrCO3) Nanodrähten der Präsenz von Polyacrylat in Kooperation mit einer COOH-funktionalisierten SAM-Oberfläche zugeschrieben werden kann. Die Kombination bestehend aus einer polaren SAM-Oberfläche und Polyacrylat fungiert als Grenzfläche für die Struktur dirigierende Kristallisation von Nanodraht-Kristallen. Weiter konnte gezeigt werden, dass die Phasenselektion von CaCO3 durch die kooperative Wechselwirkung zwischen einer SAM-Oberfläche und einem daran adsorbierten hb-Polyglycerol kontrolliert wird. Auch die Funktionalität einer SAM-Oberfläche in Gegenwart von Carboxymethyl-cellulose übt einen entscheidenden Einfluss auf die Phasenselektion des entstehenden Produktes aus. In der vorliegenden Arbeit wurden Untersuchungen an CaCO3 zur homogenen Keimbildung, zur Nukleation in Gegenwart eines Proteins sowie auf Kolloiden, die als Template fungieren, mittels Kleinwinkel-Neutronenstreuung durchgeführt. Die homogene Kristallisation in wässriger Lösung stellte sich als ein mehrstufiger Prozess heraus. In Gegenwart des Eiweißproteins Ovalbumin konnten drei Phasen identifiziert werden, darunter eine anfänglich vorhandene amorphe sowie zwei kristalline Phasen.
Resumo:
The idea was to obtain nanowires in a chemical laboratory under convenient and simple conditions by employing templates. Thus it was possible to produce nanochains by interlinking of gold colloids synthesized by the two-phase-method of M. Brust with by making use of vanadiumoxide nanotubes as template. The length of the resulting nanowires is varying between 1100 nm and 200 nm with a diameter of about 16 nm. Due to a flexible linker the obtained nanowires are not completely rigid. These unique structural features could make them interesting objects for structuring and assembling in the nanoscale range. Another way to produce gold nanowires was realized by a two-step surface metallization procedure, using type I collagen fibres as a template. Gold colloids were used to label the collagen fibres by direct electrostatic interaction, followed by growth steps to enhance the size of the adsorbed colloidal gold crystals, resulting in a complete metallization of the template surface. The length of the resulting gold nanowires reaches several micrometers, with a diameter ~ 100 to 120 nm. To gain a deeper insight into the process of biomineralization the cooperative effect of self-assembled monolayers as substrate and a soluble counterpart on the nucleation and crystal growth of calcium phosphate was studied by diffusion techniques with a pH switch as initiator. As soluble component Perlucin and Nacrein were used. Both are proteins originally extracted from marine organisms, the first one from the Abalone shell and the second one from oyster pearls. Both are supposed to facilitate the calcium carbonate formation in vivo. Studies with Perlucin revealed that this protein shows a clear cooperative effect at a very low concentration with a hydrophobic surface promoting the calcium phosphate precipitation resulting in a sponge like structure of hydroxyapatite. The Perlucin molecule is very flexible and is unfolded by adsorbing to the hydrophobic surface and uncovers its active side. Hydrophilic surfaces did not have a deeper impact. Studies with Nacrein as additive have shown that the protein stabilizes octacalcium phosphate at room temperature on carboxylic self-assembled monolayer and at 34 °C on all other employed surfaces by interaction with the mineral. On the hydroxyl-, alkyl-, and amin-terminated self-assembled monolayers at room temperature the octacalcium phosphate get transformed to hydroxyapatite. Main analytical techniques which are used in this work are transmission electron microscopy, high resolution scanning electron microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, Raman micro-spectroscopy and quartz crystal microbalance.
Resumo:
The work presented in this thesis deals with complex materials, which were obtained by self-assembly of monodisperse colloidal particles, also called colloidal crystallization. Two main fields of interest were investigated, the first dealing with the fabrication of colloidal monolayers and nanostructures, which derive there from. The second turned the focus on the phononic properties of colloidal particles, crystals, and glasses. For the fabrication of colloidal monolayers a method is introduced, which is based on the sparse distribution of dry colloidal particles on a parent substrate. In the ensuing floating step the colloidal monolayer assembles readily at the three-phase-contact line, giving a 2D hexagonally ordered film under the right conditions. The unique feature of this fabrication process is an anisotropic shrinkage, which occurs alongside with the floating step. This phenomenon is exploited for the tailored structuring of colloidal monolayers, leading to designed hetero-monolayers by inkjet printing. Furthermore, the mechanical stability of the floating monolayers allows the deposition on hydrophobic substrates, which enables the fabrication of ultraflat nanostructured surfaces. Densely packed arrays of crescent shaped nanoparticles have also been synthesized. It is possible to stack those arrays in a 3D manner allowing to mutually orientate the individual layers. In a step towards 3D mesoporous materials a methodology to synthesize hierarchically structured inverse opals is introduced. The deposition of colloidal particles in the free voids of a host inverse opal allows for the fabrication of composite inverse opals on two length scales. The phononic properties of colloidal crystals and films are characterized by Brillouin light scattering (BLS). At first the resonant modes of colloidal particles consisting of polystyrene, a copolymer of methylmethacrylate and butylacrylate, or of a silica core-PMMA shell topography are investigated, giving insight into their individual mechanical properties. The infiltration of colloidal films with an index matching liquid allows measuring the phonon dispersion relation. This leads to the assignment of band gaps to the material under investigation. Here, two band gaps could be found, one originating from the fcc order in the colloidal crystal (Bragg gap), the other stemming from the vibrational eigenmodes of the colloidal particles (hybridization gap).
Resumo:
Nichtklassische Kristallisationen tragen heutzutage einen entscheidenden Anteil zum Verständnis von Biomineralisationsprozessen und anspruchsvoller Morphogenese in vitro bei. Die vorliegende Dissertation stellt drei neue Vertreter nichtklassischer Kristallisationen vor, die während der Fällung von Calciumcarbonat und verwandten zweiwertigen Carbonaten auftreten.rn(a) Zum ersten Male wird eine Symmetrie-brechende Phasenselektion von Calciumcarbonat beschrieben, die auf einem subtilen Wechselspiel von verketteten Gleichgewichten basiert und deren Ursache letztendlich der paritätsverletzenden Energiedifferenz (PVED) zugeschrieben wird. rn(b) Die interkristalline Minoritätskomponente eines Mesokristalles, seien es z.B. eingeschlossenes Proteine oder polymere Additive, erfahren eine Morphogenese im Sinne einer Formpressung. Dieser bislang wenig beachtete Effekt in Mesokristallen wurde zur Herstellung von Nanoröhren eingesetzt, die aus verschiedensten Materialien bestehen können (z.B. Calciumcarbonat oder Cadmiumsulfid).rn(c) Das Hauptaugenmerk dieser Dissertation liegt auf dem Auftreten eines flüssig-amorphen Intermediates während der Metallcarbonat-Präzipitation. Durch diffusionskontrollierte und kontaktfreie Versuchsführung konnte die Existenz eines solchen nichtklassischen, flüssigen Intermediates, welches der kristallinen Phase bei neutralen pH vorangeht, sicher nachgewiesen werden. rn
Resumo:
This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis it has been studied the crystallization and morphology of random copolymers poly (L-lactide-ran-ε-caprolactone) with different compositions of the two monomers since the physical, mechanical, optical and chemical properties of a material depend on this behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) to observe behaviors due to the different compositions of the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-caprolactone) was investigated by polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). Their thermal behavior was observed with crystallization from melt. It was observed that with increasing amounts of PCL in the copolymer, there is a decrease of the thermal degradation. Studies on the crystallization kinetics have shown that small quantities of PCL in the copolymer increase the overall crystallization kinetics and the crystal growth rate which decreases with higher quantities of PCL.