547 resultados para Convolvulus arvensis


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To better understand the environmental variability during the Holsteinian interglacial, we have palynologically analyzed a new core from Dethlingen, northern Germany, at a decadal resolution. Our data provide insights into the vegetation dynamics and thus also climate variability during the meso- to telocratic forest phases of the interglacial. Temperate mixed forests dominated the regional landscape throughout the Holsteinian. However, changes in the forest composition during the younger stages of the interglacial suggest a climatic transition towards milder conditions in winter. The strong presence of boreal floral elements during the older stages of the Holsteinian interglacial suggests a high seasonality. In contrast, during the younger stages the development of sub-Atlantic and Atlantic floral elements suggests increasingly warm and humid climatic conditions. Peak warming during the younger stage of the Holsteinian is marked by the maximum pollen abundances of Buxus, Abies, and Quercus. Although the vegetation dynamics suggest a general warming trend throughout the Holsteinian interglacial, abrupt as well as gradual changes in the relative abundances of temperate plants indicate considerable climatic variability. In particular, two marked declines in temperate taxa leading to the transient development of boreal and sub-temperate forests indicate short-term climatic oscillations that occurred within full interglacial conditions. The palynological signatures of these two regressive phases in vegetation development differ with regard to the expansion of pioneer trees, the abundances and rates of change of temperate taxa, and the presence of frost-sensitive taxa. These differences point to different mechanisms responsible for the individual regressive phases. Assuming a correlation of the interglacial at Dethlingen with Marine Isotope Stage (MIS) 11, our data suggest that temperate forests prevailed in northern Germany during the younger parts of MIS 11c.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multi-proxy palaeoecological investigation including pollen, plant macrofossil, radiocarbon and sedimentological analyses, was performed on a small mountain lake in the Eastern Pyrenees. This has allowed the reconstruction of: (1) the vegetation history of the area based on five pollen diagrams and eight AMS14C dates and (2) the past lake-level changes, based on plant macrofossil, lithological and pollen analysis of two stratigraphical transects correlated by pollen analysis. The palaeolake may have appeared before the Younger Dryas; the lake-level was low and the vegetation dominated by cold steppic grasslands. The lake-level rose to its highest level during the Holocene in the Middle Atlantic (at ca. 5060±45 b.p.). Postglacial forests (Quercetum mixtum and Abieto-Fagetum) developed progressively in the lower part of the valley, while dense Pinus uncinata forests rapidly invaded the surroundings of the mire and remained the dominant local vegetation until present. The observed lowering of the lake levels during the Late Atlantic and the Subboreal (from 5060 ± B.P. to 3590±40 b.p.) was related to the overgrowth of the mire. The first obvious indications of anthropogenic disturbances of the vegetation are recorded at the Atlantic/Subboreal boundary as a reduction in the forest component, which has accelerated during the last two millennia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli obiettivi della presente ricerca sono stati l’identificazione di un protocollo per la conservazione ex situ e lo studio delle risposte fisiologiche allo stress salino di due specie endemiche della regione Liguria, di particolare interesse poiché protette e a rischio d’estinzione. Sia il Limonium cordatum che il Convolvulus sabatius vivono in condizioni naturali particolari, infatti, sono costantemente esposte agli aerosol marini, che presentano elevate concentrazioni di NaCl, per tali ragioni si è cercato di comprendere quali fossero i meccanismi di risposta delle due specie allo stress salino; da ultimo, se presentassero risposte simili, visto l’habitat comune che condividono. Per capire in modo più approfondito le risposte fisiologiche delle due piante, è stato anche preso in considerazione l’habitat naturale per cogliere eventuali differenze nella zona di crescita, per esempio maggiore e/o minore esposizione agli spruzzi marini di una piuttosto che dell’altra. Per il raggiungimento di tali obiettivi si è proceduto con: •L’utilizzo della coltura in vitro per comprendere i meccanismi responsabili della tolleranza e/o dell’adattamento allo stress salino, che ha permesso di confrontare le due specie in un ambiente controllato con la sola variabile della concentrazione salina. Per valutare tali risposte si sono effettuate delle indagini morfologiche, istologiche e fisiologiche; • L’identificazione delle condizioni ambientali migliori per la possibile reintroduzione, sia con l’uso della coltura in vitro, che ha permesso di stabilire il valore soglia di tolleranza della concentrazione di NaCl di entrambe le specie, che con sopralluoghi in loco, per individuare eventuali situazioni differenti tra le due specie, che giustificassero risposte diverse tra di esse. Nel caso del Convolvulus sabatius, essendo il suo areale di crescita più limitato e, volendo quindi approfondire le condizioni ambientali naturali di crescita, si è provveduto a simulare l’habitat autoctono con prove in vivo.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km-300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen analysis of Wisconsinan sediments from eleven localities in northern and central Illinois, combined with the results of older studies, allows a first general survey of the vegetational changes in Illinois during the last glaciation. In the late Altonian (after 40,000 B.P.), pine was already the most prevalent tree type in northern Illinois. Probably because of the influence of the last Altonian ice advance to northern Illinois, pine migrated to the south and reached south-central Illinois, which was at that time a region of prairie, with oak and hickory trees in favorable sites. Likewise in the late Altonian, spruce appeared in northern Illinois. Spruce also expanded its area to the south during the Wisconsinan, reaching south-central Illinois only after 21,000 B.P., in the early Woodfordian. Deciduous trees (predominantly oak) were present in south-central Illinois throughout the Wisconsinan. Their prevalence decreased to the north. The vegetation during the different subdivisions of the last glacial period in Illinois was approximately as follows: Late Altonian: Pine/spruce forest with some deciduous trees in northern and central Illinois; prairie and oak/hickory stands in south-central Illinois; immigration of pine. Farmdalian: Pine/spruce forest in central Illinois; deciduous trees and pine in south-central Illinois, with areas of open vegetation, perhaps similar to the present-day transition of prairie to forest in the northern Great Plains. Woodfordian: Northern and central Illinois ice covered; in south central Illinois, spruce and oak as dominant tree types, but also pine and grassland. During the Woodfordian, pine and spruce disappeared again from south-central Illinois, and oak/hickory forest and prairie again prevailed. The ice-free areas of northern Illinois become populated temporarily with spruce, but later there is proof of deciduous forest in this region. Pollen investigations in south-central Illinois have shown convincingly that deciduous trees could survive relatively close (less than 60 km) to the ice margin. Therefore the frequently presented view that arctic climatic conditions prevailed in North America during the last glaciation far south of the ice margin can be refuted for the Illinois area, confirming the opinion of other authors resulting from investigations of fossil mollusks and frost-soil features. The small number of localities investigated still permits no complete reconstruction of the vegetation zones and their possible movements in Illinois. During the Altonian and Farmdalian in Illinois, a vegetational zonation probably existed similar to that of today in North America. As the ice pushed southward as far as 39° 20' N. lat in the early Woodfordian, this zonation was apparently broken up under the influence of a relatively moderate climate. In any case, the Vandalia area, which was only about 60 km south of the ice, was at that time neither in a tundra zone nor in a zone of boreal coniferous forest.

Relevância:

10.00% 10.00%

Publicador: