901 resultados para Computer Network Resources
Resumo:
The Bloom filter is a space efficient randomized data structure for representing a set and supporting membership queries. Bloom filters intrinsically allow false positives. However, the space savings they offer outweigh the disadvantage if the false positive rates are kept sufficiently low. Inspired by the recent application of the Bloom filter in a novel multicast forwarding fabric, this paper proposes a variant of the Bloom filter, the optihash. The optihash introduces an optimization for the false positive rate at the stage of Bloom filter formation using the same amount of space at the cost of slightly more processing than the classic Bloom filter. Often Bloom filters are used in situations where a fixed amount of space is a primary constraint. We present the optihash as a good alternative to Bloom filters since the amount of space is the same and the improvements in false positives can justify the additional processing. Specifically, we show via simulations and numerical analysis that using the optihash the false positives occurrences can be reduced and controlled at a cost of small additional processing. The simulations are carried out for in-packet forwarding. In this framework, the Bloom filter is used as a compact link/route identifier and it is placed in the packet header to encode the route. At each node, the Bloom filter is queried for membership in order to make forwarding decisions. A false positive in the forwarding decision is translated into packets forwarded along an unintended outgoing link. By using the optihash, false positives can be reduced. The optimization processing is carried out in an entity termed the Topology Manger which is part of the control plane of the multicast forwarding fabric. This processing is only carried out on a per-session basis, not for every packet. The aim of this paper is to present the optihash and evaluate its false positive performances via simulations in order to measure the influence of different parameters on the false positive rate. The false positive rate for the optihash is then compared with the false positive probability of the classic Bloom filter.
Resumo:
This article explores the way users of an online gay chat room negotiate the exchange of photographs and the conduct of video conferencing sessions and how this negotiation changes the way participants manage their interactions and claim and impute social identities. Different modes of communication provide users with different resources for the control of information, affecting not just what users are able to reveal, but also what they are able to conceal. Thus, the shift from a purely textual mode for interacting to one involving visual images fundamentally changes the kinds of identities and relationships available to users. At the same time, the strategies users employ to negotiate these shifts of mode can alter the resources available in different modes. The kinds of social actions made possible through different modes, it is argued, are not just a matter of the modes themselves but also of how modes are introduced into the ongoing flow of interaction.
Resumo:
This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.
Resumo:
Policy hierarchies and automated policy refinement are powerful approaches to simplify administration of security services in complex network environments. A crucial issue for the practical use of these approaches is to ensure the validity of the policy hierarchy, i.e. since the policy sets for the lower levels are automatically derived from the abstract policies (defined by the modeller), we must be sure that the derived policies uphold the high-level ones. This paper builds upon previous work on Model-based Management, particularly on the Diagram of Abstract Subsystems approach, and goes further to propose a formal validation approach for the policy hierarchies yielded by the automated policy refinement process. We establish general validation conditions for a multi-layered policy model, i.e. necessary and sufficient conditions that a policy hierarchy must satisfy so that the lower-level policy sets are valid refinements of the higher-level policies according to the criteria of consistency and completeness. Relying upon the validation conditions and upon axioms about the model representativeness, two theorems are proved to ensure compliance between the resulting system behaviour and the abstract policies that are modelled.
Resumo:
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.
Resumo:
Biological systems have facility to capture salient object(s) in a given scene, but it is still a difficult task to be accomplished by artificial vision systems. In this paper a visual selection mechanism based on the integrate and fire neural network is proposed. The model not only can discriminate objects in a given visual scene, but also can deliver focus of attention to the salient object. Moreover, it processes a combination of relevant features of an input scene, such as intensity, color, orientation, and the contrast of them. In comparison to other visual selection approaches, this model presents several interesting features. It is able to capture attention of objects in complex forms, including those linearly nonseparable. Moreover, computer simulations show that the model produces results similar to those observed in natural vision systems.
Resumo:
Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.
Resumo:
In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.
Resumo:
The Sznajd model (SM) has been employed with success in the last years to describe opinion propagation in a community. In particular, it has been claimed that its transient is able to reproduce some scale properties observed in data of proportional elections, in different countries, if the community structure (the network) is scale-free. In this work, we investigate the properties of the transient of a particular version of the SM, introduced by Bernardes and co-authors in 2002. We studied the behavior of the model in networks of different topologies through the time evolution of an order parameter known as interface density, and concluded that regular lattices with high dimensionality also leads to a power-law distribution of the number of candidates with v votes. Also, we show that the particular absorbing state achieved in the stationary state (or else, the winner candidate), is related to a particular feature of the model, that may not be realistic in all situations.
Resumo:
Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of task scheduling is to minimize the makespan of applications, exploiting the best possible way to use shared resources. Applications have requirements which call for customized environments for their execution. One way to provide such environments is to use virtualization on demand. This paper presents two schedulers based on integer linear programming which schedule virtual machines (VMs) in grid resources and tasks on these VMs. The schedulers differ from previous work by the joint scheduling of tasks and VMs and by considering the impact of the available bandwidth on the quality of the schedule. Experiments show the efficacy of the schedulers in scenarios with different network configurations.
Resumo:
Cloud computing innebär användning av datorresurser som är tillgängliga via ett nätverk, oftast Internet och är ett område som har vuxit fram i snabb takt under de senaste åren. Allt fler företag migrerar hela eller delar av sin verksamhet till molnet. Sogeti i Borlänge har behov av att migrera sina utvecklingsmiljöer till en molntjänst då drift och underhåll av dessa är kostsamma och tidsödande. Som Microsoftpartners vill Sogeti använda Microsoft tjänst för cloud computing, Windows Azure, för detta syfte. Migration till molnet är ett nytt område för Sogeti och de har inga beskrivningar för hur en sådan process går till. Vårt uppdrag var att utveckla ett tillvägagångssätt för migration av en IT-lösning till molnet. En del av uppdraget blev då att kartlägga cloud computing, dess beståndsdelar samt vilka för- och nackdelar som finns, vilket har gjort att vi har fått grundläggande kunskap i ämnet. För att utveckla ett tillvägagångssätt för migration har vi utfört flera migrationer av virtuella maskiner till Windows Azure och utifrån dessa migrationer, litteraturstudier och intervjuer dragit slutsatser som mynnat ut i ett generellt tillvägagångssätt för migration till molnet. Resultatet har visat att det är svårt att göra en generell men samtidigt detaljerad beskrivning över ett tillvägagångssätt för migration, då scenariot ser olika ut beroende på vad som ska migreras och vilken typ av molntjänst som används. Vi har dock utifrån våra erfarenheter från våra migrationer, tillsammans med litteraturstudier, dokumentstudier och intervjuer lyft vår kunskap till en generell nivå. Från denna kunskap har vi sammanställt ett generellt tillvägagångssätt med större fokus på de förberedande aktiviteter som en organisation bör genomföra innan migration. Våra studier har även resulterat i en fördjupad beskrivning av cloud computing. I vår studie har vi inte sett att någon tidigare har beskrivit kritiska framgångsfaktorer i samband med cloud computing. I vårt empiriska arbete har vi dock identifierat tre kritiska framgångsfaktorer för cloud computing och i och med detta täckt upp en del av kunskapsgapet där emellan.
Resumo:
The problems of finding best facility locations require complete and accurate road network with the corresponding population data in a specific area. However the data obtained in road network databases usually do not fit in this usage. In this paper we propose our procedure of converting the road network database to a road graph which could be used in localization problems. The road network data come from the National road data base in Sweden. The graph derived is cleaned, and reduced to a suitable level for localization problems. The population points are also processed in ordered to match with that graph. The reduction of the graph is done maintaining most of the accuracy for distance measures in the network.