924 resultados para Computational methods
Resumo:
The test based on comparison of the characteristic coefficients of the adjancency matrices of the corresponding graphs for detection of isomorphism in kinematic chains has been shown to fail in the case of two pairs of ten-link, simple-jointed chains, one pair corresponding to single-freedom chains and the other pair corresponding to three-freedom chains. An assessment of the merits and demerits of available methods for detection of isomorphism in graphs and kinematic chains is presented, keeping in view the suitability of the methods for use in computerized structural synthesis of kinematic chains. A new test based on the characteristic coefficients of the “degree” matrix of the corresponding graph is proposed for detection of isomorphism in kinematic chains. The new test is found to be successful in the case of a number of examples of graphs where the test based on characteristic coefficients of adjancency matrix fails. It has also been found to be successful in distinguishing the structures of all known simple-jointed kinematic chains in the categories of (a) single-freedom chains with up to 10 links, (b) two-freedom chains with up to 9 links and (c) three-freedom chains with up to 10 links.
Resumo:
Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.
Resumo:
The chemical and physical properties of bimetallic clusters have attracted considerable attention due to the potential technological applications of mixed-metal systems. It is of fundamental interests to study clusters because they are the link between atomic surface and bulk properties. More information of metal-metal bond in small clusters can be hence released. The studies in my thesis mainly focus on the two different kinds of bimetallic clusters: the clusters consisting of extraordinary shaped all metal four-membered rings and a series of sodium auride clusters. As described in most general organic chemistry books nowadays, a group of compounds are classified as aromatic compounds because of their remarkable stabilities, particular geometrical and energetic properties and so on. The notation of aromaticity is essentially qualitative. More recently, the connection has been made between aromaticity and energetic and magnetic properties. Also, the discussions of the aromatic nature of molecular rings are no longer limited to organic compounds obeying the Hückel’s rule. In our research, we mainly applied the GIMIC method to several bimetallic clusters at the CCSD level, and compared the results with those obtained by using chemical shift based methods. The magnetically induced ring currents can be generated easily by employing GIMIC method, and the nature of aromaticity for each system can be therefore clarified. We performed intensive quantum chemical calculations to explore the characters of the anionic sodium auride clusters and the corresponding neutral clusters since it has been fascinating in investigating molecules with gold atom involved due to its distinctive physical and chemical properties. As small gold clusters, the sodium auride clusters seem to form planar structures. With the addition of a negative charge, the gold atom in anionic clusters prefers to carry the charge and orients itself away from other gold atoms. As a result, the energetically lowest isomer for an anionic cluster is distinguished from the one for the corresponding neutral cluster. Mostly importantly, we presented a comprehensive strategy of ab initio applications to computationally implement the experimental photoelectron spectra.
Resumo:
In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.
Resumo:
This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Ubiquitous computing is about making computers and computerized artefacts a pervasive part of our everyday lifes, bringing more and more activities into the realm of information. The computationalization, informationalization of everyday activities increases not only our reach, efficiency and capabilities but also the amount and kinds of data gathered about us and our activities. In this thesis, I explore how information systems can be constructed so that they handle this personal data in a reasonable manner. The thesis provides two kinds of results: on one hand, tools and methods for both the construction as well as the evaluation of ubiquitous and mobile systems---on the other hand an evaluation of the privacy aspects of a ubiquitous social awareness system. The work emphasises real-world experiments as the most important way to study privacy. Additionally, the state of current information systems as regards data protection is studied. The tools and methods in this thesis consist of three distinct contributions. An algorithm for locationing in cellular networks is proposed that does not require the location information to be revealed beyond the user's terminal. A prototyping platform for the creation of context-aware ubiquitous applications called ContextPhone is described and released as open source. Finally, a set of methodological findings for the use of smartphones in social scientific field research is reported. A central contribution of this thesis are the pragmatic tools that allow other researchers to carry out experiments. The evaluation of the ubiquitous social awareness application ContextContacts covers both the usage of the system in general as well as an analysis of privacy implications. The usage of the system is analyzed in the light of how users make inferences of others based on real-time contextual cues mediated by the system, based on several long-term field studies. The analysis of privacy implications draws together the social psychological theory of self-presentation and research in privacy for ubiquitous computing, deriving a set of design guidelines for such systems. The main findings from these studies can be summarized as follows: The fact that ubiquitous computing systems gather more data about users can be used to not only study the use of such systems in an effort to create better systems but in general to study phenomena previously unstudied, such as the dynamic change of social networks. Systems that let people create new ways of presenting themselves to others can be fun for the users---but the self-presentation requires several thoughtful design decisions that allow the manipulation of the image mediated by the system. Finally, the growing amount of computational resources available to the users can be used to allow them to use the data themselves, rather than just being passive subjects of data gathering.
Resumo:
This thesis presents a highly sensitive genome wide search method for recessive mutations. The method is suitable for distantly related samples that are divided into phenotype positives and negatives. High throughput genotype arrays are used to identify and compare homozygous regions between the cohorts. The method is demonstrated by comparing colorectal cancer patients against unaffected references. The objective is to find homozygous regions and alleles that are more common in cancer patients. We have designed and implemented software tools to automate the data analysis from genotypes to lists of candidate genes and to their properties. The programs have been designed in respect to a pipeline architecture that allows their integration to other programs such as biological databases and copy number analysis tools. The integration of the tools is crucial as the genome wide analysis of the cohort differences produces many candidate regions not related to the studied phenotype. CohortComparator is a genotype comparison tool that detects homozygous regions and compares their loci and allele constitutions between two sets of samples. The data is visualised in chromosome specific graphs illustrating the homozygous regions and alleles of each sample. The genomic regions that may harbour recessive mutations are emphasised with different colours and a scoring scheme is given for these regions. The detection of homozygous regions, cohort comparisons and result annotations are all subjected to presumptions many of which have been parameterized in our programs. The effect of these parameters and the suitable scope of the methods have been evaluated. Samples with different resolutions can be balanced with the genotype estimates of their haplotypes and they can be used within the same study.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
An efficient and statistically robust solution for the identification of asteroids among numerous sets of astrometry is presented. In particular, numerical methods have been developed for the short-term identification of asteroids at discovery, and for the long-term identification of scarcely observed asteroids over apparitions, a task which has been lacking a robust method until now. The methods are based on the solid foundation of statistical orbital inversion properly taking into account the observational uncertainties, which allows for the detection of practically all correct identifications. Through the use of dimensionality-reduction techniques and efficient data structures, the exact methods have a loglinear, that is, O(nlog(n)), computational complexity, where n is the number of included observation sets. The methods developed are thus suitable for future large-scale surveys which anticipate a substantial increase in the astrometric data rate. Due to the discontinuous nature of asteroid astrometry, separate sets of astrometry must be linked to a common asteroid from the very first discovery detections onwards. The reason for the discontinuity in the observed positions is the rotation of the observer with the Earth as well as the motion of the asteroid and the observer about the Sun. Therefore, the aim of identification is to find a set of orbital elements that reproduce the observed positions with residuals similar to the inevitable observational uncertainty. Unless the astrometric observation sets are linked, the corresponding asteroid is eventually lost as the uncertainty of the predicted positions grows too large to allow successful follow-up. Whereas the presented identification theory and the numerical comparison algorithm are generally applicable, that is, also in fields other than astronomy (e.g., in the identification of space debris), the numerical methods developed for asteroid identification can immediately be applied to all objects on heliocentric orbits with negligible effects due to non-gravitational forces in the time frame of the analysis. The methods developed have been successfully applied to various identification problems. Simulations have shown that the methods developed are able to find virtually all correct linkages despite challenges such as numerous scarce observation sets, astrometric uncertainty, numerous objects confined to a limited region on the celestial sphere, long linking intervals, and substantial parallaxes. Tens of previously unknown main-belt asteroids have been identified with the short-term method in a preliminary study to locate asteroids among numerous unidentified sets of single-night astrometry of moving objects, and scarce astrometry obtained nearly simultaneously with Earth-based and space-based telescopes has been successfully linked despite a substantial parallax. Using the long-term method, thousands of realistic 3-linkages typically spanning several apparitions have so far been found among designated observation sets each spanning less than 48 hours.
Resumo:
This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we estimate the ability of the Bertini cascade to simulate Compact Muon Solenoid (CMS) hadron calorimeter HCAL. LHC test beam activity has a tightly coupled cycle of simulation-to-data analysis. Typically, a Geant4 computer experiment is used to understand test beam measurements. Thus an another aspect of this thesis is a description of studies related to developing new CMS H2 test beam data analysis tools and performing data analysis on the basis of CMS Monte Carlo events. These events have been simulated in detail using Geant4 physics models, full CMS detector description, and event reconstruction. Using the ROOT data analysis framework we have developed an offline ANN-based approach to tag b-jets associated with heavy neutral Higgs particles, and we show that this kind of NN methodology can be successfully used to separate the Higgs signal from the background in the CMS experiment.
Resumo:
Computational fluid dynamics has reached a stage where flow field in practical situation can be predicted to aid the design and to probe into the fundamental flow physics to understand and resolve the issues in fundamental fluid mechanics The study examines the computation of reacting flows After exploring the conservation equations for species and energy, the methods of closing the reaction rate terms in turbulent flow have been examined briefly Two cases of computation where combustion-flow interaction plays important role, have been discussed to illustrate the computational aspects and the physical insight that can be gained by the reacting flow computation
Resumo:
Finite-state methods have been adopted widely in computational morphology and related linguistic applications. To enable efficient development of finite-state based linguistic descriptions, these methods should be a freely available resource for academic language research and the language technology industry. The following needs can be identified: (i) a registry that maps the existing approaches, implementations and descriptions, (ii) managing the incompatibilities of the existing tools, (iii) increasing synergy and complementary functionality of the tools, (iv) persistent availability of the tools used to manipulate the archived descriptions, (v) an archive for free finite-state based tools and linguistic descriptions. Addressing these challenges contributes to building a common research infrastructure for advanced language technology.
Resumo:
Floquet analysis is widely used for small-order systems (say, order M < 100) to find trim results of control inputs and periodic responses, and stability results of damping levels and frequencies, Presently, however, it is practical neither for design applications nor for comprehensive analysis models that lead to large systems (M > 100); the run time on a sequential computer is simply prohibitive, Accordingly, a massively parallel Floquet analysis is developed with emphasis on large systems, and it is implemented on two SIMD or single-instruction, multiple-data computers with 4096 and 8192 processors, The focus of this development is a parallel shooting method with damped Newton iteration to generate trim results; the Floquet transition matrix (FTM) comes out as a byproduct, The eigenvalues and eigenvectors of the FTM are computed by a parallel QR method, and thereby stability results are generated, For illustration, flap and flap-lag stability of isolated rotors are treated by the parallel analysis and by a corresponding sequential analysis with the conventional shooting and QR methods; linear quasisteady airfoil aerodynamics and a finite-state three-dimensional wake model are used, Computational reliability is quantified by the condition numbers of the Jacobian matrices in Newton iteration, the condition numbers of the eigenvalues and the residual errors of the eigenpairs, and reliability figures are comparable in both the parallel and sequential analyses, Compared to the sequential analysis, the parallel analysis reduces the run time of large systems dramatically, and the reduction increases with increasing system order; this finding offers considerable promise for design and comprehensive-analysis applications.
Resumo:
Satisfiability algorithms for propositional logic have improved enormously in recently years. This improvement increases the attractiveness of satisfiability methods for first-order logic that reduce the problem to a series of ground-level satisfiability problems. R. Jeroslow introduced a partial instantiation method of this kind that differs radically from the standard resolution-based methods. This paper lays the theoretical groundwork for an extension of his method that is general enough and efficient enough for general logic programming with indefinite clauses. In particular we improve Jeroslow's approach by (1) extending it to logic with functions, (2) accelerating it through the use of satisfiers, as introduced by Gallo and Rago, and (3) simplifying it to obtain further speedup. We provide a similar development for a "dual" partial instantiation approach defined by Hooker and suggest a primal-dual strategy. We prove correctness of the primal and dual algorithms for full first-order logic with functions, as well as termination on unsatisfiable formulas. We also report some preliminary computational results.