967 resultados para Chlamydia, conjunctivitis, cystitis, koalas, infertility, quantitative polymerase chain reaction
Resumo:
Background. The aims of this study were to define the mRNA expression profiles of MYCN, DDX1, TrkA, and TrkC in biopsy tumor samples from 64 Brazilian patients with neuroblastomas of different risk stages and to correlate altered expression with prognostic values. Procedure. Patients were retrospectively classified into low- (n = 11), intermediate- (n = 18), and high-risk (n = 35) groups using standard criteria. The mRNA levels of the above genes were measured by quantitative real-time polymerase chain reaction. Univariate analyses were performed and survival curves were plotted by the Kaplan-Meier method. Results. Of the 64 patients, 53% were female and 62.5% were older than 18 months. The 5-year overall survival (OS) for the entire cohort was 40.3%, with inferior median OS in patients identified in the intermediate- and high-risk groups. A significant difference in OS with respect to TrkA mRNA expression was found for the high-risk group vs. either the low- or intermediate-risk groups (P < 0.01, log rank test). Within the intermediate-risk group, neuroblastoma patients with positive TrkA mRNA expression had better clinical outcomes than patients with no TrkA transcript expression (P = 0.004). Another difference in OS was only found between the intermediate- and high-risk groups (P < 0.027, log rank test). No significant correlation of mRNA expression and survival outcome could be detected for the MYCN, DDX1. Conclusions. Positive expression of TrkA mRNA may be a clinically useful addition to the current risk classification system, allowing the identification of NB tumors with favorable prognosis. Pediatr Blood Cancer 2011; 56: 749-756. (c) 2010 Wiley-Liss, Inc.
Resumo:
The role of chemokines has been extensively analyzed both in cancer risk and tumor progression. Among different cytokines, CXCR4 and its ligand CXCL12 have been recently subjected to a closer examination. The single-nucleotide polymorphism (SNP) rs1801157 (previously known as CXCL12-A/SDF1-3`A) in the CXCL12 gene and the relative expression of mRNA CXCL12 in peripheral blood were assessed in breast cancer patients, since the chemokine CXCL12 and its receptor CXCR4 regulate leukocyte trafficking and many essential biological processes, including tumor growth, angiogenesis and metastasis of different types of tumors. Genotyping was performed by PCR-RFLP (polymerase chain reaction followed by restriction fragment length polymorphism) using MspI restriction enzyme and the expression analyses by quantitative RT-PCR. No difference in GG genotype and allele A carrier frequencies were observed between breast cancer patients and healthy blood donors and nor when CXCL12 mRNA expression was assessed among patients with different tumor stages. However a significant difference was observed when CXCL12 mRNA relative expression was analyzed in breast cancer patients in accordance to the presence or absence of the CXCL12 rs1801157 allele A. Allele A breast cancer patients presented a mRNA CXCL12 expression about 2.1-fold smaller than GG breast cancer patients. Estrogen positive patients presenting CXCL12 allele A presented a significantly lower expression of CXCL12 in peripheral blood (p = 0.039) than GG hormone positive patients. Our findings demonstrated that allele A is associated with low expression of CXCL12 in the peripheral blood from ER-positive breast cancer patients, which suggests implications on breast cancer clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1 alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CK beta 8/CCL23, and osteoprotegerin, which were significantly higher than in control. Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.
Resumo:
Altered expression of histone deacetylases (HDACs) is a common feature in several human malignancies and may represent an interesting target for cancer treatment, including haematological malignancies. We evaluated the mRNA gene expression profile of 12 HDAC genes by quantitative real-time polymerase chain reaction in 94 consecutive childhood acute lymphoblastic leukaemia (ALL) samples and its association with clinical/biological features and survival. ALL samples showed higher expression levels of HDAC2, HDAC3, HDAC8, HDAC6 and HDAC7 when compared to normal bone marrow samples. HDAC1 and HDAC4 showed high expression in T-ALL and HDAC5 was highly expressed in B-lineage ALL. Higher than median expression levels of HDAC3 were associated with a significantly lower 5-year event-free survival (EFS) in the overall group of patients (P = 0.03) and in T-ALL patients (P = 0.01). HDAC7 and HADC9 expression levels higher than median were associated with a lower 5-year EFS in the overall group (P = 0.04 and P = 0.003, respectively) and in B-lineage CD10-positive patients (P = 0.009 and P = 0.005, respectively). Our data suggest that higher expression of HDAC7 and HDAC9 is associated with poor prognosis in childhood ALL and could be promising therapeutic targets for the treatment of refractory childhood ALL.
Resumo:
Objective: Variations in genes that are critical for tooth formation may contribute to the tooth agenesis. MMPs are potential candidate genes for dental alterations based on the roles they play during embryogenesis. The aim of this study was to investigate the possible association between MMP1, MMP3, and MMP20 and tooth agenesis. Methods: One hundred sixty-seven nuclear families from two different populations were analysed, 116 from Brazil and 51 from Turkey. Probands had at least one congenitally missing tooth. DNA samples were obtained from blood or saliva samples and genotyping was performed using TagMan chemistry. In addition, Mmp20 was selected for quantitative real-time polymerase chain reaction analysis with SYBR Green I Dye in mouse tooth development. Results: Associations between tooth agenesis and MMP1 (p = 0.007), and MMP20 (p = 0.03) were found in Brazilian families. In the total dataset, MMP20 continued to be associated with tooth agenesis (p = 0.01). Mmp20 was not expressed during the initial stages of tooth development. Conclusion: Our findings provide evidence that MMP1 and MMP20 play a role in human tooth agenesis. (C) 2010 Elsevier Ltd. All rights reserved.
GP5+/6+ SYBR Green methodology for simultaneous screening and quantification of human papillomavirus
Resumo:
Background: Detection and quantification of human papillomavirus (HPV) may help in predicting the evolution of HPV infection and progression of associated lesions. Objectives: We propose a novel protocol using consensus primers GP5+/6+ in a SYBR Green quantitative real-time (Q-RT) polymerase chain reaction (PCR). The strategy permits screening for HPV infection and viral load quantification simultaneously. Study design: DNA from 153 archived cervical samples, previously tested for HPV detection by GP5+/6+ PCR and typed by EIA-RLB (enzyme immunoassay-reverse line blot) or sequence analysis, was analysed using SYBR Green Q-RT PCR. Melting temperature assay (T(m)) and cycle threshold (C(t)) were used to evaluate HPV positivity and viral load. The T(m) in the range of 77-82 degrees C was considered to be positive for HPV-DNA. HPV results generated through GP5+/6+ conventional PCR were considered the gold standard against which sensitivity and specificity of our assay were measured. Results: Out of 104 HPV positive samples, 100 (96.2%) were also determined as positive by SYBR Green Q-RT PCR; of the 49 HPV-negative samples, all were determined as negative. There was an excellent positivity agreement (K = 0.94) between the SYBR Green Q-RT and the previous methods employed. The specificity and sensitivity were 100% and 96.2%, respectively. Comparison of SYBR Green Q-RT and TaqMan oligo-probe technologies gave an excellent concordance (pc = 0.95) which validated the proposed strategy. Conclusions: We propose a sensitive and easy-to-perform technique for HPV screening and viral load quantification simultaneously. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Four different fibroblast growth factor receptors (FGFR) are known, three of which have splice variants (known as the b and c variants) in the FGF-binding domain, to give different patterns of sensitivity to the different FGFs. The expression of the b and c variants of the FGF receptors. together with the expression of the ligands FGF1. FGF2, FGF3, FGF7, FGF8b and FGF8c, was determined by quantitative reverse transcription-polymerase chain reaction in developing whole mouse inner ears, and in dissected components of the postnatal mouse inner ear. At embryonic age (E)10.5 days, when the otocyst is a simple closed sac, the receptor most heavily expressed was FGFR2b, relative to the postnatal day 0 level. Over the period E10.5-E12.5. during which the structures of the inner ear start to form, the expression of the different FGF receptors increased 10(2)-10(4) fold per unit of tissue, and there was a gradual switch towards expression of the 'c' splice variants of FGFR2 and FGFR3 rather than the 'b' variants. At E10.5, the ligands most heavily expressed, relative to the postnatal day 0 level, were FGF3, FGF8b and FGF8c. In the postnatal inner eat. the patterns of expression of receptors and ligands tended to be correlated, such that receptor variants were expressed in the same regions as the ligands that are known to activate them effectively. The neural/sensory region expressed high levels of FGFR3c, and high levels of the ligand FGF8b. The same area also expressed high levels of FGFR1b and FGFR2b, and high levels of FGF3. The lateral wall of the cochlea (including the stria vascularis and the spiral ligament) expressed high levels of FGFR1c and FGF1. 11 is suggested that the different FGF receptors and ligands are expressed in a spatially coordinated pattern to selectively program cochlear development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Single cell genetic analysis is generally performed using PCR and FISH. Until recently, FISH has been the method of choice. FISH however is expensive, has significant misdiagnosis rates, can result in interpretation difficulties and is labour intensive making it unsuitable for high throughput processing. Recently fluorescent PCR reliability has increased to levels at or surpassing FISH whilst maintaining low cost. However, PCR accuracy has been a concern due to allelic dropout. Multiplex PCR can now increase accuracy by using multiple markers for each chromosome to firstly provide diagnosis if markers fail and,or secondly confirm diagnosis. We compare a variety of diagnostic methods and demonstrate for the first time a multiplex PCR system providing simultaneous diagnosis and confirmation of the major aneuploidy chromosomes (21, 18, 13) and sex as well as DNA fingerprint in single cells. We also discuss the implications of using PCR for aneuploidy screening in preimplantation genetic diagnosis. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The presence of an intrinsic renin-angiotensin system (RAS) in the rat epididymis has been previously established by showing the expression of several key RAS components, and in particular angiotensinogen, the indispensable element for the intracellular generation of angiotensin II. In this study, the possible involvement of this local epididymal RAS in the testicular effects of chronic hypoxia was investigated. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and by in situ hybridization histochemistry of the rat epididymis were used to show changes in localization and expression of angiotensinogen. Results from RT-PCR analysis demonstrated that chronic hypoxia caused a marked decrease (60%) in the expression of angiotensinogen mRNA, when compared with that in the normoxic epididymis. Western blot analysis demonstrated a less decrease (35%) in the expression of angiotensinogen protein. In situ hybridization histochemistry showed that the reduced angiotensinogen mRNA in chronic hypoxia was specifically localized to the epididymal epithelium from the cauda, corpus and caput regions of the epididymis; a distribution similar to that of normoxic rats. It was concluded that chronic hypoxia decreases the transcriptional and translational expression of angiotensinogen, and thus local formation of angiotensin II, in the rat epididymis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The detection of Neisseria gonorrhoeae by the polymerase chain reaction (PCR) is now recognized as a sensitive and specific method of diagnosing infection by the organism. In this Study 152 urine specimens were examined for N. gonorrhoeae by a real-time PCR method using the LightCycler platform and results were compared to an in-house PCR assay using an ELISA-based detection method. N. gonorrhoeae DNA was detected in 29 (19%) specimens by LightCycler PCR (LC-PCR) and in 31 (20%) specimens by the in house PCR method. The LightCycler assay proved to be specific and 94% sensitive when compared to the in house PCR method. These features combined with the rapid turn-around time for results makes the LC-PCR particularly suitable for the detection of N. gonorrhoeae in a routine clinical laboratory. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The aim of this study was to further investigate the mechanism of suppression of natural killer (NK) cell cytotoxic activity In peripheral blood following strenuous exercise. Blood was collected for analysis of NK cell concentration, cytotoxic activity, CD2 surface expression and perforin gene expression from runners (RUN, n = 6) and resting controls (CONTROL, n = 4) pre-exercise, 0, 1.5, 5, and 24 h following a 60-min treadmill run at 80% of VO2 peak. Natural killer cytotoxic activity, measured using a whole blood chromium release assay, fluctuated minimally in the CONTROL group and increased by 63% and decreased by 43% 0 and 1.5 h post-exercise, respectively, in the RUN group (group x time, P < 0.001). Lytic index (cytotoxic activity per cell) did not change. Perforin mRNA, measured using quantitative real-time polymerase chain reaction (ORT-PCR) decreased from pre- to post-exercise and remained decreased through 24 h, The decrease from pre- to 0 In post-exercise was seen predominately in the RUN group and was inversely correlated r = - 0.95) to pre-exercise perform mRNA. The NK cell surface expression of CD2 (lymphocyte function-associated antigen-2) was determined using fluorescent antibodies and flow cytometry, There was no change in the proportion of NK cells expressing CD2 or CD2 density, We conclude that (1) numerical redistribution accounted for most of the change in NK cytotoxic activity following a strenuous run, (2) decrease in perforin gene expression during the run was inversely related to pre-exercise levels but did not parallel changes in cytotoxic activity, and (3) CD2 surface expression was not affected by exercise.
Resumo:
Isolated systolic hypertension (ISH) occurs predominantly in the elderly, with a considerable morbidity and mortality. Its etiology is unknown but is likely to involve a significant genetic component. The aim of this study was to examine the angiotensinogen gene in ISH. The M235T and G(- 6)A polymorphisms were genotyped by polymerase chain reaction (PCR) in 86 ISH patients and 120 normotensive controls. Plasma angiotensinogen concentration was determined in 198 subjects by an indirect radioimmunoassay technique. Angiotensinogen mRNA concentration was determined by quantitative competitive reverse transcription (RT)-PCR in subcutaneous adipose tissue from a subset of these patients (n = 8) and controls (n = 6). Both the M235T (p = 0.0015) and G(- 6)A (p = 0.029) polymorphisms were associated with ISH. Plasma angiotensinogen concentration was higher in patients than controls (p < 0.0001), but was not associated with genotype. Angiotensinogen mRNA concentration in adipose tissue from ISH subjects was significantly lower than in adipose tissue from normotensive subjects (p = 0.033). The association of angiotensinogen gene variants with ISH and the elevation of plasma angiotensinogen concentration in these patients suggests a role of the angiotensinogen gene in this form of hypertension. Angiotensinogen gene expression may be altered in ISH, but this requires further examination.
Resumo:
Fibroblast growth factor receptors (FGFRs) undergo highly regulated spatial and temporal changes of expression during development. This study describes the use of quantitative reverse transcriptase-polymerase chain reaction and immunochemistry to assess the changes in expression of FGFR4 as compared to its FGFR4-17a and -17b isoforms in mouse tissues, from early embryogenesis through to adulthood. Compared to FGFR4, the expression of the isoforms is more restricted at all developmental stages tested. The reverse transcriptase-polymerase chain reaction demonstrated that FGFR4 is expressed in more tissue types than either of its isoforms: it was found predominantly in lung, liver, brain, skeletal muscle and kidney, whereas the FGFR4-17a form was detected in lung and skeletal muscle, and the FGFR4-17b form only in lung, liver, skeletal muscle and kidney. Immunohistochemistry confirmed strong FGFR4-17b expression in the postnatal lung. When combined, the results suggest that FGFR4 variants play important roles particularly in lung and skeletal muscle development.