925 resultados para Characterizing Network Traffic
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
This report aims at describing the project developed in the Customer Relationship Management Field Lab, under a partnership established between Nova SBE and the group IMPRESA. The major goal was to elaborate on possible initiatives to increase the traffic on the website of Expresso, which were supported by evidences found through structured interviews and the company’s internal data. As the main findings are the increasing role of mobile devices and social media on the news’ consumption habits. These encourage an integrated improvement of the overall digital offer of Expresso, in a perspective of brand and audience development that should be a goal for the whole company.
Resumo:
The primary purpose of this research is to examine the feasibility of expanding Quinta dos Açores retailer network in Lisbon starting from 2015 onwards. A time series model was developed to estimate the company’s future production and sales. A Discounted Cash Flow analysis was also conducted to determine the profitability of this expansion opportunity. Our findings reveal that Quinta dos Açores will face negative results in the first two years of the expansion strategy, but the overall opportunity presents a net positive result of almost three million euros.
Resumo:
Following the Introduction, which surveys existing literature on the technology advances and regulation in telecommunications and on two-sided markets, we address specific issues on the industries of the New Economy, featured by the existence of network effects. We seek to explore how each one of these industries work, identify potential market failures and find new solutions at the economic regulation level promoting social welfare. In Chapter 1 we analyze a regulatory issue on access prices and investments in the telecommunications market. The existing literature on access prices and investment has pointed out that networks underinvest under a regime of mandatory access provision with a fixed access price per end-user. We propose a new access pricing rule, the indexation approach, i.e., the access price, per end-user, that network i pays to network j is function of the investment levels set by both networks. We show that the indexation can enhance economic efficiency beyond what is achieved with a fixed access price. In particular, access price indexation can simultaneously induce lower retail prices and higher investment and social welfare as compared to a fixed access pricing or a regulatory holidays regime. Furthermore, we provide sufficient conditions under which the indexation can implement the socially optimal investment or the Ramsey solution, which would be impossible to obtain under fixed access pricing. Our results contradict the notion that investment efficiency must be sacrificed for gains in pricing efficiency. In Chapter 2 we investigate the effect of regulations that limit advertising airtime on advertising quality and on social welfare. We show, first, that advertising time regulation may reduce the average quality of advertising broadcast on TV networks. Second, an advertising cap may reduce media platforms and firms' profits, while the net effect on viewers (subscribers) welfare is ambiguous because the ad quality reduction resulting from a regulatory cap o¤sets the subscribers direct gain from watching fewer ads. We find that if subscribers are sufficiently sensitive to ad quality, i.e., the ad quality reduction outweighs the direct effect of the cap, a cap may reduce social welfare. The welfare results suggest that a regulatory authority that is trying to increase welfare via regulation of the volume of advertising on TV might necessitate to also regulate advertising quality or, if regulating quality proves impractical, take the effect of advertising quality into consideration. 3 In Chapter 3 we investigate the rules that govern Electronic Payment Networks (EPNs). In EPNs the No-Surcharge Rule (NSR) requires that merchants charge at most the same amount for a payment card transaction as for cash. In this chapter, we analyze a three- party model (consumers, merchants, and a proprietary EPN) with endogenous transaction volumes and heterogenous merchants' transactional benefits of accepting cards to assess the welfare impacts of the NSR. We show that, if merchants are local monopolists and the network externalities from merchants to cardholders are sufficiently strong, with the exception of the EPN, all agents will be worse o¤ with the NSR, and therefore the NSR is socially undesirable. The positive role of the NSR in terms of improvement of retail price efficiency for cardholders is also highlighted.
Resumo:
Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.
Resumo:
Objective: Nutritional labeling systems are considered a tool to fight obesity since they aim to contribute for more informed food choices as well as assist consumers to make healthier nutrition options and in this manner, contribute to a decrease in the obesity rate. This study intends to analyze the effect of different types of labeling systems on parents’ purchasing decisions for their children on a specific product: breakfast cereals. More precisely, how labels affect parents’ perception of healthiness regarding cereals and if the nutritional information has an effect on intended purchases for their children. Participants and methods: We conducted a study with 135 Portuguese parents of children aged 4 to12 years. Parents answered a questionnaire with one of three hypothetical cereals menus. Menus only differed in their nutritional labeling technique: no labels (control group), reference intake labels or traffic light labels. In addition, we conducted 20 face-to-face interviews to a different group of parents in order to perform a recall task. Findings: This paper provides no evidence to suggest that energy labeling or traffic light labeling systems alone were successful in helping parents making healthy purchases of cereals for their children. Therefore, there is the need to promote supplementary policies to encourage the consumption of healthier food and help fight obesity.
Resumo:
Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
We present a study on human mobility at small spatial scales. Differently from large scale mobility, recently studied through dollar-bill tracking and mobile phone data sets within one big country or continent, we report Brownian features of human mobility at smaller scales. In particular, the scaling exponents found at the smallest scales is typically close to one-half, differently from the larger values for the exponent characterizing mobility at larger scales. We carefully analyze 12-month data of the Eduroam database within the Portuguese university of Minho. A full procedure is introduced with the aim of properly characterizing the human mobility within the network of access points composing the wireless system of the university. In particular, measures of flux are introduced for estimating a distance between access points. This distance is typically non-Euclidean, since the spatial constraints at such small scales distort the continuum space on which human mobility occurs. Since two different ex- ponents are found depending on the scale human motion takes place, we raise the question at which scale the transition from Brownian to non-Brownian motion takes place. In this context, we discuss how the numerical approach can be extended to larger scales, using the full Eduroam in Europe and in Asia, for uncovering the transi- tion between both dynamical regimes.
Resumo:
PhD Thesis in Bioengineering
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
Wireless body sensor networks (WBSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WBSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. However, one important and difficult aspect of WBSNs is to provide data transmissions with quality of service, among other factors due to the antennas being small size and placed close to the body. Such transmissions cannot be fully provided without the assumption of a MAC protocol that solves the problems of the medium sharing. A vast number of MAC protocols conceived for wireless networks are based on random or scheduled schemes. This paper studies firstly the suitability of two MAC protocols, one using CSMA and the other TDMA, to transmit directly to the base station the signals collected continuously from multiple sensor nodes placed on the human body. Tests in a real scenario show that the beaconed TDMA MAC protocol presents an average packet loss ratio lower than CSMA. However, the average packet loss ratio is above 1.0 %. To improve this performance, which is of vital importance in areas such as e-health and ambient assisted living, a hybrid TDMA/CSMA scheme is proposed and tested in a real scenario with two WBSNs and four sensor nodes per WBSN. An average packet loss ratio lower than 0.2 % was obtained with the hybrid scheme. To achieve this significant improvement, the hybrid scheme uses a lightweight algorithm to control dynamically the start of the superframes. Scalability and traffic rate variation tests show that this strategy allows approximately ten WBSNs operating simultaneously without significant performance degradation.