553 resultados para Cathode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, first isolated in 2004 and the subject of the 2010 Nobel Prize in physics, has generated a tremendous amount of research interest in recent years due to its incredible mechanical and electrical properties. However, difficulties in large-scale production and low as-prepared surface area have hindered commercial applications. In this dissertation, a new material is described incorporating the superior electrical properties of graphene edge planes into the high surface area framework of carbon nanotube forests using a scalable and reproducible technology.

The objectives of this research were to investigate the growth parameters and mechanisms of a graphene-carbon nanotube hybrid nanomaterial termed “graphenated carbon nanotubes” (g-CNTs), examine the applicability of g-CNT materials for applications in electrochemical capacitors (supercapacitors) and cold-cathode field emission sources, and determine materials characteristics responsible for the superior performance of g-CNTs in these applications. The growth kinetics of multi-walled carbon nanotubes (MWNTs), grown by plasma-enhanced chemical vapor deposition (PECVD), was studied in order to understand the fundamental mechanisms governing the PECVD reaction process. Activation energies and diffusivities were determined for key reaction steps and a growth model was developed in response to these findings. Differences in the reaction kinetics between CNTs grown on single-crystal silicon and polysilicon were studied to aid in the incorporation of CNTs into microelectromechanical systems (MEMS) devices. To understand processing-property relationships for g-CNT materials, a Design of Experiments (DOE) analysis was performed for the purpose of determining the importance of various input parameters on the growth of g-CNTs, finding that varying temperature alone allows the resultant material to transition from CNTs to g-CNTs and finally carbon nanosheets (CNSs): vertically oriented sheets of few-layered graphene. In addition, a phenomenological model was developed for g-CNTs. By studying variations of graphene-CNT hybrid nanomaterials by Raman spectroscopy, a linear trend was discovered between their mean crystallite size and electrochemical capacitance. Finally, a new method for the calculation of nanomaterial surface area, more accurate than the standard BET technique, was created based on atomic layer deposition (ALD) of titanium oxide (TiO2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications.

The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications.

Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements.

Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.

We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.

We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.

The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.

Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.

The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium is used in the cathode and electrolyte of rechargeable batteries in many portable electronics and electric vehicles, and is thus seen as a critical component of modern technology (Gruber et al., 2011). Electric vehicles are promoted as a way to reduce carbon emissions associated with the transportation sector, which accounts for 14.3% of anthropogenic greenhouse gas emissions (OECD International Transport Forum, 2010). However, the sustainability of lithium procurement will influence the overall environmental impact of this proposed “green” solution. It is estimated that 66% of the world’s lithium resource is contained in natural brines, 24% in pegmatites, and 8% in sedimentary rocks such as hectorite clays (Gruber et al., 2011). It has been shown that “[r]ecycling of lithium from Li-ion batteries may be a critical factor in balancing the supply of lithium with future demand” (Gruber et al., 2011). In an attempt to quantify energy and materials consumption associated with production of a unit of useful lithium compounds, industry reports and peer-reviewed scientific literature concerning lithium mining and lithium recycling were reviewed and compared. Other aspects of sustainability, such as waste or by-products produced in the production of a unit of useful lithium, were also explored. Thus, this paper will serve to further the evaluation of the comparative environmental consequences associated with lithium production via extraction versus recycling. Efficiencies must be made in both processes to maximize productivity while minimizing ecological harm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flame retardants (FRs) are added to materials to enhance the fire safety level of readily combustible polymers. Although they have been purported to aid in preventing fires in some cases, they have also become a significant cause for concern given the vast data on environmental persistence and human and animal adverse health effects. Evidence since the 1980s has shown that Canadian, American and Europeans have detectable levels of FRs in their bodies. North Americans in particular have high levels of these chemicals due to stringent flammability standards and the higher use of polybrominated diphenyl ethers (PBDEs) in North America as opposed to Europe. FRs have been detected in household dust and some evidence suggests that TVs could be a significant source of exposure to FRs. It is imperative to re-visit the flammability standard (UL94V) that allows for FR use in TVs plastic materials by providing a risk versus benefit analysis to determine if this standard provides a fire safety benefit and if it plays a major role in FR exposure. This report first examined the history of televisions and the progression to the UL94V flammability test standard to understand why FRs were first added to polymers used in the manufacturing of TVs. It has been demonstrated to be due to fire hazards resulting from the use of plastic materials in cathode-ray tube (CRT) TVs that had an “instant-on” feature and high voltage and operating temperatures. In providing a risk versus benefit analysis, this paper presents the argument that 1) by providing a market survey the current flammability test standard (UL94V) is outdated and lacks relevance to current technology as flat, thin, energy efficient Liquid Crystal Displays (LCDs) dominate over traditionally used heavy, bulky and energy-intensive CRTs; 2) FRs do not impart fire safety benefits considering that there is a lack of valid fire safety concern, such as reduced internal and external ignition and fire hazard, and a lack of valid fire data and hazard for television fires in general and finally; 3) the standard is overly stringent as it does not consider the risk due to exposure to FRs in household dust due to the proliferation and greater use of televisions in households. Therefore, this report argues that the UL94V standard has become trapped in history and needs to be updated as it may play a major role in FR exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) CuCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The characterization of the catalyst by X-ray diffractometry and transmission electron microscopy confirms the formation of a single-phase, 3-dimensional, ordered mesoporous CuCo2O4 structure. The as-prepared CuCo2O4 nanoparticles possess a high specific surface area of 97.1 m2 g- 1 and a spinel crystalline structure. Cyclic voltammetry demonstrates that mesoporous CuCo2O4 catalyst enhances the kinetics for either oxygen reduction reaction (ORR) or oxygen evolution reaction (OER). The Li-O2 battery utilizing 3DOM CuCo2O4 shows a higher specific capacity of 7456 mAh g- 1 than that with pure Ketjen black (KB). Moreover, the CuCo2O4-based electrode enables much enhanced cyclability with a 610 mV smaller discharge-recharge voltage gap than that of the carbon-only cathode at a current rate of 100 mA g- 1. Such excellent catalytic performance of CuCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure. The excellent electrochemical performances coupled with its facile and cost-effective way will render the 3D mesoporous CuCo2O4 nanostructures as attractive electrode materials for promising application in Li-O2 batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt-free composite cathodes consisting of Pr0.6Sr0.4FeO 3-δ -xCe0.9Pr0.1O 2-δ (PSFO-xCPO, x = 0-50 wt%) have been synthesized using a one-pot method. X-ray diffraction, scanning electron microscopy, thermal expansion coefficient, conductivity, and polarization resistance (R P ) have been used to characterize the PSFO-xCPO cathodes. Furthermore the discharge performance of the Ni-SSZ/SSZ/GDC/PSFO-xCPO cells has been measured. The experimental results indicate that the PSFO-xCPO composite materials fully consist of PSFO and CPO phases and posses a porous microstructure. The conductivity of PSFO-xCPO decreases with the increase of CPO content, but R P of PSFO-40CPO shows the smallest value amongst all the samples. The power density of single cells with a PSFO-40CPO composite cathode is significantly improved compared with that of the PSFO cathode, exhibiting 0.43, 0.75, 1.08 and 1.30 W cm-2 at 650, 700, 750 and 800 °C, respectively. In addition, single cells with the PSFO-40CPO composite cathode show a stable performance with no obvious degradation over 100 h when operating at 750 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

R.R.M. de Sousa et al. Nitriding in cathodic cage of stainless steel AISI 316: Influence of sample position. Vacuum, [s.l.], n.83, 2009. Disponivel em: . Acesso em: 04 out.2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industrial production of aluminium is an electrolysis process where two superposed horizontal liquid layers are subjected to a mainly vertical electric current supplied by carbon electrodes. The lower layer consists of molten aluminium and lies on the cathode. The upper layer is the electrolyte and is covered by the anode. The interface between the two layers is often perturbed, leading to oscillations, or waves, similar to the waves on the surface of seas or lakes. The presence of electric currents and the resulting magnetic field are responsible for electromagnetic (Lorentz) forces within the fluid, which can amplify these oscillations and have an adverse influence on the process. The electrolytic bath vertical to horizontal aspect ratio is such, that it is advantageous to use the shallow water equations to model the interface motion. These are the depth-averaging the Navier-Stokes equations so that nonlinear and dispersion terms may be taken into account. Although these terms are essential to the prediction of wave dynamics, they are neglected in most of the literature on interface instabilities in aluminium reduction cells where only the linear theory is usually considered. The unknown variables are the two horizontal components of the fluid velocity, the height of the interface and the electric potential. In this application, a finite volume resolution of the double-layer shallow water equations including the electromagnetic sources has been developed, for incorporation into a generic three-dimensional computational fluid dynamics code that also deals with heat transfer within the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’isomérisation alcaline du lactose en lactulose a été effectuée électro-chimiquement à l’aide d’un réacteur d’électro-activation en combinaison avec des résines échangeuses d’anions de polystyrène de trois types; à savoir Lewatit VP-OC-1065 faible-acide, Lewatit MP-64 moyenne-acide et Lewatit Monoplus M500 forte-acide. Les paramètres opératoires qui ont fait l’objet de cette étude ont été étudiés sur trois blocs expérimentaux pour optimiser le système. Dans le Premier bloc, les paramètres étudiés sont : (1) ratio lactose-5%(p/v) : résine échangeuse d’anions (1:0.5, 1:1 et 1:2), (2) intensité du champ électrique : 50 mA, 100 mA et 200 mA et (3) type de résines : faible, moyenne et forte. Dans le Deuxième bloc, les paramètres mis à l’étude comprenaient : (1) l’intensité du champ électrique : 300 mA, 450 mA et 550 mA, (2) le débit de la solution traitée : 25 ml / min, 50 ml/ min et 100 ml/min et (3) la surface active de la membrane adjacente au compartiment cathodique : 0.78 cm2, 7.06 cm2 et 18.1 cm2. Le Troisième bloc expérimental a été effectué sur la base de la distance entre la membrane et l’électrode : 3.1 cm, 5.6 cm et 9 cm. Le même modèle expérimental a était également réalisé avec du perméat du lactosérum d’une concentration de 7% (p/v). Les résultats obtenus ont révélé que le meilleur rendement de l’isomérisation du lactose en lactulose était obtenu après 30 minutes d’électroactivation en utilisant une solution modèle de lactose-5% avec une valeur d’environ 20.1%. Les conditions opératoires qui ont permis d’avoir ce taux de conversion sont une intensité du courant de 550 mA, un débit de la solution de 25 ml/min, une surface active de la membrane de 7.06 cm2 et une distance de 9 cm entre la cathode et la membrane qui lui y est adjacente. En utilisant le perméat de lactosérum-7%, un taux de conversion de lactose en lactulose de 8.34% a était obtenu avec une intensité du courant de 200 mA, un débit de 120 ml/min, une surface active de de 18.1cm2 et une distance de 9 cm entre la membrane et l’électrode dans le compartiment cathodique. Les analyses de variance ont indiqué un effet catalytique significatif du type de la résine. En effet, la résine-forte a permis d’avoir les plus hauts rendements de la réaction d’isomérisation par électro-activation. La résistance électrique globale du système d’électroactivation dépendait de la valeur de l’intensité du courant. Le produit final était d’une grande pureté, car il ne présentait que quelques traces de galactose (< 4%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

R.R.M. de Sousa et al. Nitriding in cathodic cage of stainless steel AISI 316: Influence of sample position. Vacuum, [s.l.], n.83, 2009. Disponivel em: . Acesso em: 04 out.2010.