994 resultados para Calcium, Simulation, Epidermis, Automata
Resumo:
Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.
Resumo:
Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.
Resumo:
Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.
Resumo:
Membrane transport of proton and calcium (Ca2+) plays a fundamental role in growth and developmental processes in higher plant cells. The plasma membrane contains an ATPase (P-ATPase) that pumps protons into the extracellular space, whereas two proton pumps, a vacuolar-type ATPase (V-ATPase) and a pyrophosphatase (H+-PPase) are associated with the tonoplast and pump protons into the vacuole. The P-ATPase, V-ATPase and H+-PPase catalyse electrogenic H+-translocation, giving rise to a proton motive force used to transport different molecules, via specific transport proteins (channels or carriers: H+-symport or H+-antiport), across the plasma membrane and the tonoplast
Resumo:
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.
Resumo:
Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
Disulfiram and calcium carbimide are two alcohol deterrants widely used in alcoholism treatment, however, there exist great concerns over their safety. Reports on hepatotoxicity, mainly related to disulfiram therapy, have been published. The hepatotoxic potential of calcium carbimide is less well characterized. Here, we describe four cases of liver damage related to this therapeutic group that were submitted to a Registry of hepatotoxicity and point out the limitations that we face when prescribing these compounds. A reassessment of the role of these compounds in the management of alcohol dependence is clearly needed.
Resumo:
Cyclin-dependent kinases (CDKs) inhibitors have emerged as interesting therapeutic candidates. Of these, (S)-roscovitine has been proposed as potential neuroprotective molecule for stroke while (R)-roscovitine is currently entering phase II clinical trials against cancers and phase I clinical tests against glomerulonephritis. In addition, (R)-roscovitine has been suggested as potential antihypertensive and anti-inflammatory drug. Dysfunction of intracellular calcium balance is a common denominator of these diseases, and the two roscovitine enantiomers (S and R) are known to modulate calcium voltage channel activity differentially. Here, we provide a detailed description of short- and long-term responses of roscovitine on intracellular calcium handling in renal epithelial cells. Short-term exposure to (S)-roscovitine induced a cytosolic calcium peak, which was abolished after stores depletion with cyclopiazonic acid (CPA). Instead, (R)-roscovitine caused a calcium peak followed by a small calcium plateau. Cytosolic calcium response was prevented after stores depletion. Bafilomycin, a selective vacuolar H(+)-ATPase inhibitor, abolished the small calcium plateau. Long-term exposure to (R)-roscovitine significantly reduced the basal calcium level compared to control and (S)-roscovitine treated cells. However, both enantiomers increased calcium accumulation in the endoplasmic reticulum (ER). Consistently, cells treated with (R)-roscovitine showed a significant increase in SERCA activity, whereas (S)-roscovitine incubation resulted in a reduced PMCA expression. We also found a tonic decreased ability to release calcium from the ER, likely via IP3 signaling, under treatment with (S)- or (R)-roscovitine. Together our data revealed that (S)-roscovitine and (R)-roscovitine exert distinct enantiospecific effects on intracellular calcium signaling in renal epithelial cells. This distinct pharmacological profile can be relevant for roscovitine clinical use.
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
Resumo:
The need for drug combinations to treat visceral leishmaniasis (VL) arose because of resistance to antimonials, the toxicity of current treatments and the length of the course of therapy. Calcium channel blockers (CCBs) have shown anti-leishmanial activity; therefore their use in combination with standard drugs could provide new alternatives for the treatment of VL. In this work, in vitro isobolograms of Leishmania (Leishmania) chagasi using promastigotes or intracellular amastigotes were utilised to identify the interactions between five CCBs and the standard drugs pentamidine, amphotericin B and glucantime. The drug interactions were assessed with a fixed ratio isobologram method and the fractional inhibitory concentrations (FICs), sum of FICs (ΣFICs) and the overall mean ΣFIC were calculated for each combination. Graphical isobologram analysis showed that the combination of nimodipine and glucantime was the most promising in amastigotes with an overall mean ΣFIC value of 0.79. Interactions between CCBs and the anti-leishmanial drugs were classified as indifferent according to the overall mean ΣFIC and the isobologram graphic analysis.
Resumo:
The relationship between calcium and cardiovascular diseases (CVD) has been explored for a long time. Studies exploring the effect of calcium intake or calcium supplementation on cardiovascular risk suggest that systolic blood pressure increases under low calcium intake and decreases with calcium supplementation. A lower calcium intake has been associated with an increased risk of stroke. However, the impact of calcium supplementation on stroke risk remains unclear. Calcium supplementation may increase the risk of myocardial infarction. The relationship between vitamin D and CVD has been explored more recently. Negative correlations between vitamin D levels and the risk of hypertension, myocardial infarction, and stroke have been reported in several observational studies. The effect of vitamin D supplementation on blood pressure is still unclear and no effect of vitamin D supplementation on coronary heart disease or stroke has been clearly demonstrated. There is a lack of randomized clinical trials primarily addressing the effect of these parameters on CVD. Therefore, the real impact of calcium and vitamin D on cardiovascular outcomes remains to be documented by appropriate experimental data.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.