998 resultados para Ca-alginate oxygen diffusivity
Resumo:
The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.
Resumo:
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Resumo:
Albitization is a common process during which hydrothermal fluids convert plagioclase and/or K-feldspar into nearly pure albite; however, its specific mechanism in granitoids is not well understood. The c. 1700 Ma A-type metaluminous ferroan granites in the Khetri complex of Rajasthan, NW India, have been albitized to a large extent by two metasomatic fronts, an initial transformation of oligoclase to nearly pure albite and a subsequent replacement of microcline by albite, with sharp contacts between the microcline-bearing and microcline-free zones. Albitization has bleached the original pinkish grey granite and turned it white. The mineralogical changes include transformation of oligoclase (similar to An(12)) and microcline (similar to Or(95)) to almost pure albite (similar to An(0 center dot 5-2)), amphibole from potassian ferropargasite (X-Fe 0 center dot 84-0 center dot 86) to potassic hastingsite (X-Fe 0 center dot 88-0 center dot 97) and actinolite (X-Fe 0 center dot 32-0 center dot 67), and biotite from annite (X-Fe 0 center dot 71-0 center dot 74) to annite (X-Fe 0 center dot 90-0 center dot 91). Whole-rock isocon diagrams show that, during albitization, the granites experienced major hydration, slight gain in Si and major gain in Na, whereas K, Mg, Fe and Ca were lost along with Rb, Ba, Sr, Zn, light rare earth elements and U. Whole-rock Sm-Nd isotope data plot on an apparent isochron of 1419 +/- 98 Ma and reveal significant disturbance and at least partial resetting of the intrusion age. Severe scatter in the whole-rock Rb-Sr isochron plot reflects the extreme Rb loss in the completely albitized samples, effectively freezing Sr-87/Sr-86 ratios in the albite granites at very high values (0 center dot 725-0 center dot 735). This indicates either infiltration of highly radiogenic Sr from the country rock or, more likely, radiogenic ingrowth during a considerable time lag (estimated to be at least 300 Myr) between original intrusion and albitization. The albitization took place at similar to 350-400 degrees C. It was caused by the infiltration of an ascending hydrothermal fluid that had acquired high Na/K and Na/Ca ratios during migration through metamorphic rocks at even lower temperatures in the periphery of the plutons. Oxygen isotope ratios increase from delta O-18 = 7 parts per thousand in the original granite to values of 9-10 parts per thousand in completely albitized samples, suggesting that the fluid had equilibrated with surrounding metamorphosed crust. A metasomatic model, using chromatographic theory of fluid infiltration, explains the process for generating the observed zonation in terms of a leading metasomatic front where oligoclase of the original granite is converted to albite, and a second, trailing front where microcline is also converted to albite. The temperature gradients driving the fluid infiltration may have been produced by the high heat production of the granites themselves. The confinement of the albitized granites along the NE-SW-trending Khetri lineament and the pervasive nature of the albitization suggest that the albitizing fluids possibly originated during reactivation of the lineament. More generally, steady-state temperature gradients induced by the high internal heat production of A-type granites may provide the driving force for similar metasomatic and ore-forming processes in other highly enriched granitoid bodies.
Resumo:
Analiza el balance de oxigeno consumido en las profundidades de las aguas continentales del norte del Perú
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
Foi instalado um experimento, em janeiro de 1994, em casa de vegetação do Departamento de Fitotecnia da Universidade Federal de Viçosa, Estado de Minas Gerais. Com o objetivo de avaliar o efeito do alumínio nos teores de P, Ca e Al e na eficiência ao fósforo e cálcio de nove genótipos de café, as plantas foram crescidas em solução nutritiva com 0 e 0,296 mmol L-1 de alumínio, com pH 4,0, por um período de 115 dias. Após esse período, as plantas foram divididas em folhas superiores, folhas inferiores, primeiro par de folhas totalmente expandido, caule e raízes, para a determinação da matéria seca e de concentrações de fósforo, cálcio e alumínio. A tolerância ao alumínio foi associada ao menor acúmulo de fósforo nas raízes, à menor redução na translocação desse nutriente para a parte aérea, à menor redução na absorção de cálcio e à maior eficiência no uso do fósforo e do cálcio. Foi observado grande acúmulo de alumínio nas raízes, bem como um transporte restrito do elemento para a parte aérea, para todos os genótipos de café.
Resumo:
Fossil biogenic phosphate of fast-growing primary bone tissue of dinosaurs can preserve a histologic and isotopic time-series of annual seasonality in temperature variations, similar to tooth enamel and other accretionary skeletal phases such as corals or wood. On two bone fragments from sympatric dinosaurs with different histologic patterns of bone growth, high-resolution oxygen isotope profiles were analyzed along the radial direction of bone growth. The investigated specimens are from the Jurassic Shishugou Formation in the Junggar Basin, NW China and have distinct patterns of compositional variation. A fibrolamellar dinosaur bone with multiple lines of arrested growth (LAGs) and periodic growth cycles of decreasing bone laminae thickness displays a cyclic intra-bone variation in delta(18)O values of about 2parts per thousand corresponding with the LAGs. These growth cycles in fast-growing fibrolamellar bone provide evidence for seasonal growth of dinosaurs in lower latitudes ( similar to 45degreesN), possibly influenced by a monsoon-type paleoclimate. Seasonal changes in temperature and water supply are consistent with the oxygen isotope composition measured in dinosaur bone phosphate as well as with growth rings in contemporaneous fossil conifer wood from the same locality. In contrast, a plexiform sympatric sauropod bone displays continuous growth, free of LAGs and has a lower intra-bone variation of less than or equal to 0.8parts per thousand. Differences in bone histology are also reflected in the oxygen isotopic composition and its intra-bone variability, indicating different physiological responses to external climatic stress between sympatric dinosaur species. Seasonal intra-bone oxygen isotope variations combined with bone histology may thus yield new insights into species-specific response to climatic stress and its influence on dinosaur growth, formation of growth marks, growth rates, as welt as dinosaur thermophysiology. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
O transporte de nutriente até à superfície das raízes pode ocorrer por fluxo de massa ou por fluxo de massa e difusão, dependendo da atividade do nutriente na solução do solo e da exigência nutricional da planta. Objetivou-se verificar a contribuição dos mecanismos de fluxo de massa e de difusão para o suprimento de potássio, de cálcio e de magnésio a plantas de arroz, em experimento realizado em casa de vegetação. Aplicaram-se em amostra de Latossolo Variação Una, os seguintes tratamentos: Na2CO3, K2CO3, CaCO3 e MgCO3. Aos 75 dias da semeadura, as plantas de arroz foram colhidas e determinadas as quantidades de potássio, de cálcio e de magnésio nelas acumuladas, bem como a concentração desses nutrientes na solução do solo. Essas concentrações, multiplicadas pelo volume de água transpirado, foram usadas para calcular o suprimento por fluxo de massa. A difusão foi estimada por diferença entre a quantidade do nutriente acumulado no vegetal e a transportada por fluxo de massa. Verificou-se que o potássio foi transportado predominantemente por difusão, exceto no tratamento com K2CO3, que gerou altos teores de K na solução de solo, tornando o fluxo de massa suficiente para atender à demanda das plantas. O cálcio e o magnésio foram transportados por fluxo de massa. Segundo os resultados, a difusão foi o principal mecanismo de transporte de potássio nas condições do experimento; todavia, o fluxo de massa pode satisfazer isoladamente a demanda nutricional da planta, quando a concentração de potássio na solução do solo for muito elevada.