947 resultados para CEREBRAL BLOOD-FLOW
Resumo:
AIMS: The adaptation of the myocardial microcirculation in humans to pathologic and physiologic stress has not been examined in vivo so far. We sought to test whether the relative blood volume (rBV) measured by myocardial contrast echocardiography (MCE) can differentiate between left ventricular (LV) hypertrophy (LVH) in hypertensive heart disease and athlete's heart. METHODS AND RESULTS: Four groups were investigated: hypertensive patients with LVH (n = 15), semi-professional triathletes with LVH (n = 15), professional football players (n = 15), and sedentary control individuals without cardiovascular disease (n = 15). MCE was performed at rest and during adenosine-induced hyperaemia. The rBV (mL mL(-1)), its exchange frequency (beta, min(-1)), and myocardial blood flow (mL min(-1) g(-1)) were derived from steady state and refill sequences of ultrasound contrast agent. Hypertensive patients had lower rBV (0.093 +/- 0.013 mL mL(-1)) than triathletes (0.141 +/- 0.012 mL mL(-1), P < 0.001), football players (0.129 +/- 0.014 mL mL(-1), P < 0.001), and sedentary individuals (0.126 +/- 0.018 mL mL(-1), P < 0.001). Conversely, the exchange frequency (beta) was significantly higher in hypertensive patients (11.3 +/- 3.8 min(-1)) than in triathletes (7.4 +/- 1.8 min(-1)), football players (7.7 +/- 2.3 min(-1)), and sedentary individuals (9.0+/-2.5 min(-1)). An rBV below 0.114 mL mL(-1) distinguished hypertensive patients and triathletes with a sensitivity of 93% and a specificity of 100%. CONCLUSION: Pathologic and physiologic LVH were differentiated non-invasively and accurately by rBV, a measure of vascularisation assessed by MCE.
Resumo:
OBJECTIVES: To evaluate the effects on intestinal oxygen supply, and mucosal tissue oxygen tension during haemorrhage and after fluid resuscitation with either blood (B; n=7), gelatine (G; n=8), or lactated Ringer's solution (R; n=8) in an autoperfused, innervated jejunal segment in anaesthetized pigs. METHODS: To induce haemorrhagic shock, 50% of calculated blood volume was withdrawn. Systemic haemodynamics, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. A flowmeter was used for measuring mesenteric arterial blood flow. Mucosal tissue oxygen tension (PO(2)muc), jejunal microvascular haemoglobin oxygen saturation (HbO(2)) and microvascular blood flow were measured. Measurements were performed at baseline, after haemorrhage and at four 20 min intervals after fluid resuscitation. After haemorrhage, animals were retransfused with blood, gelatine or lactated Ringer's solution until baseline pulmonary capillary wedge pressure was reached. RESULTS: After resuscitation, no significant differences in macrohaemodynamic parameters were observed between groups. Systemic and intestinal lactate concentration was significantly increased in animals receiving lactated Ringer's solution [5.6 (1.1) vs 3.3 (1.1) mmol litre(-1); 5.6 (1.1) vs 3.3 (1.2) mmol litre(-1)]. Oxygen supply to the intestine was impaired in animals receiving lactated Ringer's solution when compared with animals receiving blood. Blood and gelatine resuscitation resulted in higher HbO(2) than with lactated Ringer's resuscitation after haemorrhagic shock [B, 43.8 (10.4)%; G, 34.6 (9.4)%; R, 28.0 (9.3)%]. PO(2)muc was better preserved with gelatine resuscitation when compared with lactated Ringer's or blood resuscitation [20.0 (8.8) vs 13.8 (7.1) mm Hg, 15.2 (7.2) mm Hg, respectively]. CONCLUSION: Blood or gelatine infusion improves mucosal tissue oxygenation of the porcine jejunum after severe haemorrhage when compared with lactated Ringer's solution.
Resumo:
BACKGROUND: A single high loading dose of 25 mg/kg caffeine has been shown to be effective for the prevention of apnoea, but may result in considerable reductions in blood flow velocity (BFV) in cerebral and intestinal arteries. OBJECTIVE: To assess the effects of two loading doses of 12.5 mg/kg caffeine given four hours apart on BFV in cerebral and intestinal arteries, left ventricular output (LVO), and plasma caffeine concentrations in preterm infants. DESIGN: Sixteen preterm neonates of <34 weeks gestation were investigated one hour after the first oral dose and one, two, and 20 hours after the second dose by Doppler sonography. RESULTS: The mean (SD) plasma caffeine concentrations were 31 (7) and 29 (7) mg/l at two and 20 hours respectively after the second dose. One hour after the first dose, none of the circulatory variables had changed significantly. One hour after the second caffeine dose, mean BFV in the internal carotid artery and anterior cerebral artery showed significant reductions of 17% and 19% (p = 0.01 and p = 0.003 respectively). BFV in the coeliac artery and superior mesenteric artery, LVO, PCO2, and respiratory rate had not changed significantly. Total vascular resistance, calculated as the ratio of mean blood pressure to LVO, had increased significantly one and two hours after the second dose (p = 0.049 and p = 0.023 respectively). CONCLUSION: A divided high loading dose of 25 mg/kg caffeine given four hours apart had decreased BFV in cerebral arteries after the second dose, whereas BFV in intestinal arteries and LVO were not affected.
Resumo:
BACKGROUND: The postoperative assessment of volume status is not straightforward because of concomitant changes in intravascular volume and vascular tone. Hypovolemia and blood flow redistribution may compromise the perfusion of the intraabdominal organs. We investigated the effects of a volume challenge in different intra- and extraabdominal vascular beds. METHODS: Twelve pigs were studied 6 h after major intraabdominal surgery under general anesthesia when clinically normovolemic. Volume challenges consisted of 200 mL rapidly infused 6% hydroxyethyl starch. Systemic (continuous thermodilution) and regional (ultrasound Doppler) flows in carotid, renal, celiac trunk, hepatic, and superior mesenteric arteries and the portal vein were continuously measured. The acute and sustained effects of the challenge were compared with baseline. RESULTS: Volume challenge produced a sustained increase of 22% +/- 15% in cardiac output (P < 0.001). Blood flow increased by 10% +/- 9% in the renal artery, by 22% +/- 15% in the carotid artery, by 26% +/- 15% in the superior mesenteric artery, and by 31% +/- 20% in the portal vein (all P < 0.001). Blood flow increases in the celiac trunk (8% +/- 13%) and the hepatic artery (7% +/- 19%) were not significant. Increases in regional blood flow occurred early and were sustained. Mean arterial and central venous blood pressures increased early and decreased later (all P < 0.05). CONCLUSIONS: A volume challenge in clinically euvolemic postoperative animals was associated with a sustained increase in blood flow to all vascular beds, although the increase in the celiac trunk and the hepatic artery was very modest and did not reach statistical significance. Whether improved postoperative organ perfusion is accompanied by a lower complication rate should be evaluated in further studies.
Resumo:
ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.
Resumo:
OBJECTIVE: To investigate whether intermittent pneumatic compression (IPC) augments skin blood flow through transient suspension of local vasoregulation, the veno-arteriolar response (VAR), in healthy controls and in patients with peripheral arterial disease (PAD). METHODS: Nineteen healthy limbs and twenty-two limbs with PAD were examined. To assess VAR, skin blood flow (SBF) was measured using laser Doppler fluxmetry in the horizontal and sitting positions and was defined as percentage change with postural alteration [(horizontal SBF--sitting SBF)/horizontal SBF x 100]. On IPC application to the foot, the calf, or both, SBF was measured with laser Doppler fluxmetry, the probe being attached to the pulp of the big toe. RESULTS: Baseline VAR was higher in the controls 63.8 +/- 6.4% than in patients with PAD (31.7 +/- 13.4%, P = .0162). In both groups SBF was significantly higher with IPC than at rest (P < .0001). A higher percentage increase with IPC was demonstrated in the controls (242 +/- 85% to 788 +/- 318%) than in subjects with PAD, for each one of the three different IPC modes investigated (98 +/- 33% to 275 +/- 72%) with IPC was demonstrated. The SBF enhancement with IPC correlated with VAR for all three compression modes (r = 0.58, P = .002 for calf compression, r = 0.65, P < .0001 for foot compression alone, and r = 0.64, P = .0002 for combined foot and calf compression). CONCLUSION: The integrity of the veno-arteriolar response correlates with the level of skin blood flow augmentation generated with intermittent pneumatic compression, indicating that this may be associated with a transient suspension of the autoregulatory vasoconstriction both in healthy controls and in patients with PAD.
Resumo:
PURPOSE: To investigate the impact of filter design on blood flow impairment in the internal carotid artery (ICA) among patients undergoing carotid artery stenting (CAS) using filter-type emboli protection devices (EPD). METHODS: Between July 2003 and March 2007, 115 filter-protected CAS procedures were performed at an academic institution in 107 consecutive patients (78 men; mean age 68 years, range 38-87). The Angioguard, FilterWire EZ, and Spider filters were used in 68 (59%), 32 (28%), and 15 (13%) of cases, respectively. Patient characteristics, procedural and angiographic data, and outcomes were prospectively entered into an electronic database and reviewed retrospectively along with all angiograms. RESULTS: Flow impairment while the filter was in place was observed in 25 (22%) cases. The presumptive reason of flow impairment was filter obstruction in 21 (18%) instances and flow-limiting spasm at the level of the filter in 4 (4%). In all cases, flow was restored after retrieval of the filter. Flow obstruction in the ICA occurred more frequently with Angioguard (22/68; 32.3%) than with FilterWire EZ (2/32; 6.2%) or Spider (1/15; 6.7%; p = 0.004). No flow occurred in 13 (19%) procedures, all of them protected with Angioguard; no patient treated with other devices experienced this event (p = 0.007). Two (8.0%) strokes occurred in procedures associated with flow impairment, while 1 (1.1%) event was observed in the presence of preserved flow throughout the intervention (p = 0.11). CONCLUSION: Flow impairment in the ICA during filter-based CAS is common and related to the type of filter used.
Resumo:
BACKGROUND: Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated. METHOD: In the present study, a new technique for side-to-side anastomosis was developed. Using a "sandwich technique", two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason's Trichrome staining. FINDINGS: The achieved tensile strengths were significantly higher using the close contact "sandwich technique" as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength. CONCLUSION: These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a "sandwich laser irradiation device" for in vivo application in the rabbit.
Resumo:
OBJECTIVE: Perforating arteries are commonly involved during the surgical dissection and clipping of intracranial aneurysms. Occlusion of perforating arteries is responsible for ischemic infarction and poor outcome. The goal of this study is to describe the usefulness of near-infrared indocyanine green videoangiography (ICGA) for the intraoperative assessment of blood flow in perforating arteries that are visible in the surgical field during clipping of intracranial aneurysms. In addition, we analyzed the incidence of perforating vessels involved during the aneurysm surgery and the incidence of ischemic infarct caused by compromised small arteries. METHODS: Sixty patients with 64 aneurysms were surgically treated and prospectively included in this study. Intraoperative ICGA was performed using a surgical microscope (Carl Zeiss Co., Oberkochen, Germany) with integrated ICGA technology. The presence and involvement of perforating arteries were analyzed in the microsurgical field during surgical dissection and clip application. Assessment of vascular patency after clipping was also investigated. Only those small arteries that were not visible on preoperative digital subtraction angiography were considered for analysis. RESULTS: The ICGA was able to visualize flow in all patients in whom perforating vessels were found in the microscope field. Among 36 patients whose perforating vessels were visible on ICGA, 11 (30%) presented a close relation between the aneurysm and perforating arteries. In one (9%) of these 11 patients, ICGA showed occlusion of a P1 perforating artery after clip application, which led to immediate correction of the clip confirmed by immediate reestablishment of flow visible with ICGA without clinical consequences. Four patients (6.7%) presented with postoperative perforating artery infarct, three of whom had perforating arteries that were not visible or distant from the aneurysm. CONCLUSION: The involvement of perforating arteries during clip application for aneurysm occlusion is a usual finding. Intraoperative ICGA may provide visual information with regard to the patency of these small vessels.
Resumo:
Blood perfusion to the femoral head might be endangered during the surgical approach or the preparation of the femoral head or both in hip resurfacing arthroplasty. The contribution of the intramedullary blood supply to the femoral head in osteoarthritis is questionable. Therefore, the contribution of the extraosseous blood supply to osteoarthritic femoral heads was measured intraoperatively to question if there is measurable blood flow between the epiphysis and metaphysis in osteoarthritic hips in case of extraosseus vessel damage. At defined points during surgery we acquired the epiphyseal and metaphyseal femoral head perfusion by high-energy laser Doppler flowmetry. Complete femoral neck osteotomy sparing the retinacular vessels to simulate intraosseous blood disruption showed unchanged epiphyseal blood flow compared to initial measurement after capsulotomy. The pulsatile signal disappeared after transection of the retinacular vessels. Based on these acute measurements, we conclude intramedullary blood vessels to the femoral head do not provide measurable blood supply to the epiphysis once the medial femoral circumflex artery or the retinacular vessels have been damaged. We recommend the use of a safe surgical approach for hip resurfacing and careful implantation of the femoral component to respect blood supply to the femoral head and neck region in hip resurfacing arthroplasty.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.
Resumo:
INTRODUCTION Vasospastic brain infarction is a devastating complication of aneurysmal subarachnoid hemorrhage (SAH). Using a probe for invasive monitoring of brain tissue oxygenation or blood flow is highly focal and may miss the site of cerebral vasospasm (CVS). Probe placement is based on the assumption that the spasm will occur either at the dependent vessel territory of the parent artery of the ruptured aneurysm or at the artery exposed to the focal thick blood clot. We investigated the likelihood of a focal monitoring sensor being placed in vasospasm or infarction territory on a hypothetical basis. METHODS From our database we retrospectively selected consecutive SAH patients with angiographically proven (day 7-14) severe CVS (narrowing of vessel lumen >50%). Depending on the aneurysm location we applied a standard protocol of probe placement to detect the most probable site of severe CVS or infarction. We analyzed whether the placement was congruent with existing CVS/infarction. RESULTS We analyzed 100 patients after SAH caused by aneurysms located in the following locations: MCA (n = 14), ICA (n = 30), A1CA (n = 4), AcoA or A2CA (n = 33), and VBA (n = 19). Sensor location corresponded with CVS territory in 93% of MCA, 87% of ICA, 76% of AcoA or A2CA, but only 50% of A1CA and 42% of VBA aneurysms. The focal probe was located inside the infarction territory in 95% of ICA, 89% of MCA, 78% of ACoA or A2CA, 50% of A1CA and 23% of VBA aneurysms. CONCLUSION The probability that a single focal probe will be situated in the territory of severe CVS and infarction varies. It seems to be reasonably accurate for MCA and ICA aneurysms, but not for ACA or VBA aneurysms.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
Over the past few decades, advances in ventricular assist device (VAD) technology have provided a promising therapeutic strategy to treat heart failure patients. Despite the improved performance and encouraging clinical outcomes of the new generation of VADs based on rotary blood pumps (RBPs), their physiologic and hematologic effects are controversial. Currently, clinically available RBPs run at constant speed, which results in limited control over cardiac workload and introduces blood flow with reduced pulsatility into the circulation. In this review, we first provide an update on the new challenges of mechanical circulatory support using rotary pumps including blood trauma, increased non-surgical bleeding rate, limited cardiac unloading, vascular malformations, end-organ function, and aortic valve insufficiency. Since the non-physiologic flow characteristic of these devices is one of the main subjects of scientific debate in the literature, we next emphasize the latest research regarding the development of a pulsatile RBP. Finally, we offer an outlook for future research in the field.
Resumo:
The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.