951 resultados para CARA utility function
Resumo:
The type III secretion system (T3SS) is an essential requirement for the virulence of many Gram-negative bacteria which infect plants, animals and men. Pathogens use the T3SS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cells, where the effectors subvert host defenses. The best candidates for directing effector protein traffic are the bacterial type III-associated appendages, called needles or pili. In plant pathogenic bacteria, the best characterized example of a T3SS-associated appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into extracellular space, and avirulence (Avr) proteins such as AvrPto which are translocated directly to the plant cytoplasm. This study deals with the structural and functional characterization of the T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a carrier of antigenic determinants for vaccination. By pulse-expression of proteins combined with immuno-electron microscopy, we discovered the Hrp pilus assembly strategy as addition of HrpA subunits to the distal end of the growing pilus, and we showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus thus functions as a conduit delivering proteins to the extracellular milieu. By using phage-display and scanning-insertion mutagenesis methods we identified a conserved HrpZ-binding peptide and localized the peptide-binding site to the central domain of HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. Taken together, the current results provide deeper insight into the molecular mechanism of T3SS-associated pilus assembly and effector protein translocation, which will be helpful for further studies on the pathogenic mechanisms of Gram-negative bacteria and for developing new strategies to prevent bacterial infection.
Resumo:
Investigations on the structure and function of hemoglobin (Hb) confined inside sol-gel template synthesized silica nanotubes (SNTs) have been discussed here. Immobilization of hemoglobin inside SNTs resulted in the enhancement of direct electron transfer during an electrochemical reaction. Extent of influence of nanoconfinement on protein activity is further probed via ligand binding and thermal stability studies. Electrochemical investigations show reversible binding of n-donor liquid ligands, such as pyridine and its derivatives, and predictive variation in their redox potentials suggests an absence of any adverse effect on the structure and function of Hb confined inside nanometer-sized channels of SNTs. Immobilization also resulted in enhanced thermal stability of Hb. The melting or denaturation temperature of Hb immobilized inside SNTs increase by approximately 4 degrees C as compared with that of free Hb in solution.
Resumo:
Intracellular membrane alterations are hallmarks of positive-sense RNA (+RNA) virus replication. Strong evidence indicates that within these exotic compartments, viral replicase proteins engage in RNA genome replication and transcription. To date, fundamental questions such as the origin of altered membranes, mechanisms of membrane deformation and topological distribution and function of viral components, are still waiting for comprehensive answers. This study addressed some of the above mentioned questions for the membrane alterations induced during Semliki Forest virus (SFV) infection of mammalian cells. With the aid of electron and fluorescence microscopy coupled with radioactive labelling and immuno-cytochemistry techniques, our group and others showed that few hours after infection the four non structural proteins (nsP1-4) and newly synthesized RNAs of SFV colocalized in close proximity of small membrane invaginations, designated as spherules . These 50-70 nm structures were mainly detected in the perinuclear area, at the limiting membrane of modified endosomes and lysosomes, named CPV-I (cytopathic vacuoles type I). More rarely, spherules were also found at the plasma membrane (PM). In the first part of this study I present the first three-dimensional reconstruction of the CPV-I and the spherules, obtained by electron tomography after chemical or cryo-fixation. Different approaches for imaging these macromolecular assemblies to obtain better structure preservation and higher resolution are presented as unpublished data. This study provides insights into spherule organization and distribution of viral components. The results of this and other experiments presented in this thesis will challenge currently accepted models for virus replication complex formation and function. In a revisitation of our previous models, the second part of this work provides the first complete description of the biogenesis of the CPV-I. The results demonstrate that these virus-induced vacuoles, where hundreds of spherules accumulate at late stages during infection, represent the final phase of a journey initiated at the PM, which apparently serves as a platform for spherule formation. From the PM spherules were internalized by an endocytic event that required the activity of the class I PI3K, caveolin-1, cellular cholesterol and functional actin-myosin network. The resulting neutral endocytic carrier vesicle delivered the spherules to the membrane of pre-existing acidic endosomes via multiple fusion events. Microtubule based transport supported the vectorial transfer of these intermediates to the pericentriolar area where further fusions generated the CPV-I. A signal for spherule internalization was identified in one of the replicase proteins, nsP3. Infections of cells with viruses harbouring a deletion in a highly phosphorylated region of nsP3 did not result in the formation of CPV-Is. Instead, thousands of spherules remained at the PM throughout the infection cycle. Finally, the role of the replicase protein nsP2 during viral RNA replication and transcription was investigated. Three enzymatic activities, protease, NTPase and RNA-triphosphatase were studied with the aid of temperature sensitive mutants in vitro and, when possible, in vivo. The results highlighted the interplay of the different nsP2 functions during different steps of RNA replication and sub-genomic promoter regulation, and suggest that the protein could have different activities when participating in the replication complex or as a free enzyme.
Resumo:
Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases. Copyright © 2010 by The American Association of Immunologists, Inc.
Resumo:
The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.
Resumo:
The luteotropic action of estrogen (E) was investigated using immature pseudopregnant rat as the model and CGS 16949A (Fadrozole hydrochloride), a potent aromatase inhibitor (AI), to block E synthesis. Aromatase activity could be inhibited by administering CGS 16949A (50 mu g/day/rat) via a mini osmotic Alzet pump (model 2002) for 3 days during pseudopregnancy. This resulted in significant reduction of serum (40%, P < 0.05) and intraovarian (70.6%, P < 0.001) estradiol-17 beta (E(2)) levels. The serum and intraovarian progesterone (P-4) levels as analyzed on day 4 of pseudopregnancy were also reduced by greater than or equal to 50% (for both, P < 0.01). Simultaneous administration of estradiol-3-benzoate (E(2)B) via an Alzet pump during the Al: treatment period at a dose of 1 mu g/day could completely reverse the Al induced reduction in P-4 secretion. The luteal cells of experimental rats depleted of E in vivo showed a significantly reduced response upon incubation with hCG or dbcAMP in vitro (P < 0.05 and 0.001, respectively). Addition of E(2) (500 pg/tube) at the time of in vitro incubation was able to partially increase the responsiveness to hCG. The luteal cell LH/hCG receptor content and the affinity of hCG binding to the receptor remained unchanged following AI treatment in vivo. Both esterified and total cholesterol content of luteal cells of rats treated with Al in vivo was significantly high (P < 0.05) suggesting that E lack results in an impairment in cholesterol utilization for steroidogenesis. The results clearly show that E regulates luteal function in the pseudopregnant rat by acting at a non-cAMP mediated event and this perhaps involves facilitation of cholesterol utilization at the mitochondrial level for P-4 synthesis.
Resumo:
Sexually mature male rabbits actively immunized against highly purified ovine LH (oLH) were used as a model system to study the effects of endogenous LH deprivation (and therefore testosterone) on spermatogenesis as well as pituitary FSH secretion. Immunization against oLH generated antibody titres capable of cross-reacting and neutralizing rabbit LH and this resulted in a significant reduction (P<0.01) in serum testosterone levels by 2-4 weeks of immunization. A significant increase in circulating FSH concentration (from a basal level of similar to 1 ng to 60-100 ng/ml; P<0.01) was observed within 4-6 weeks of immunization, perhaps a consequence of the negative feedback effect of the lack of testosterone. The effect of LH deprivation on spermatogenesis assessed by DNA flow cytometry and histological analyses of testicular biopsy tissue revealed that lack of testosterone primarily results in a rapid reduction and complete absence of round (1C) and elongated (HC) spermatids. The immediate effect of LH/testosterone deprivation thus appears to be at the step of meiotic transformation of primary spermatocytes (4C) to 1C. A significant reduction (>80%; P<0.01) in the 4C population and a relative accumulation (>90%; P<0.01) in spermatogonia (2C) was also observed, suggesting a need for testosterone during the transformation of 2C to 1C. In all but one of the rabbits, both qualitative and quantitative recovery in spermatogenesis occurred during the recovery phase, even at a time when only a marginal increase in serum testosterone (compared with the preimmunization) levels was observed as a result of a rapid decline in the cross-reactive antibody titres. These results clearly show that LH/testosterone deprivation in addition to primarily affecting the meiotic step also regulates the conversion of 2C to 4C during spermatogenesis.
Resumo:
Aim: To characterize the inhibition of platelet function by paracetamol in vivo and in vitro, and to evaluate the possible interaction of paracetamol and diclofenac or valdecoxib in vivo. To assess the analgesic effect of the drugs in an experimental pain model. Methods: Healthy volunteers received increasing doses of intravenous paracetamol (15, 22.5 and 30 mg/kg), or the combination of paracetamol 1 g and diclofenac 1.1 mg/kg or valdecoxib 40 mg (as the pro-drug parecoxib). Inhibition of platelet function was assessed with photometric aggregometry, the platelet function analyzer (PFA-100), and release of thromboxane B2. Analgesia was assessed with the cold pressor test. The inhibition coefficient of platelet aggregation by paracetamol was determined as well as the nature of interaction between paracetamol and diclofenac by an isobolographic analysis in vitro. Results: Paracetamol inhibited platelet aggregation and TxB2-release dose-dependently in volunteers and concentration-dependently in vitro. The inhibition coefficient was 15.2 mg/L (95% CI 11.8 - 18.6). Paracetamol augmented the platelet inhibition by diclofenac in vivo, and the isobole showed that this interaction is synergistic. Paracetamol showed no interaction with valdecoxib. PFA-100 appeared insensitive in detecting platelet dysfunction by paracetamol, and the cold-pressor test showed no analgesia. Conclusions: Paracetamol inhibits platelet function in vivo and shows synergism when combined with diclofenac. This effect may increase the risk of bleeding in surgical patients with an impaired haemostatic system. The combination of paracetamol and valdecoxib may be useful in patients with low risk for thromboembolism. The PFA-100 seems unsuitable for detection of platelet dysfunction and the cold-pressor test seems unsuitable for detection of analgesia by paracetamol.
Resumo:
Visual information processing in brain proceeds in both serial and parallel fashion throughout various functionally distinct hierarchically organised cortical areas. Feedforward signals from retina and hierarchically lower cortical levels are the major activators of visual neurons, but top-down and feedback signals from higher level cortical areas have a modulating effect on neural processing. My work concentrates on visual encoding in hierarchically low level cortical visual areas in human brain and examines neural processing especially in cortical representation of visual field periphery. I use magnetoencephalography and functional magnetic resonance imaging to measure neuromagnetic and hemodynamic responses during visual stimulation and oculomotor and cognitive tasks from healthy volunteers. My thesis comprises six publications. Visual cortex forms a great challenge for modeling of neuromagnetic sources. My work shows that a priori information of source locations are needed for modeling of neuromagnetic sources in visual cortex. In addition, my work examines other potential confounding factors in vision studies such as light scatter inside the eye which may result in erroneous responses in cortex outside the representation of stimulated region, and eye movements and attention. I mapped cortical representations of peripheral visual field and identified a putative human homologue of functional area V6 of the macaque in the posterior bank of parieto-occipital sulcus. My work shows that human V6 activates during eye-movements and that it responds to visual motion at short latencies. These findings suggest that human V6, like its monkey homologue, is related to fast processing of visual stimuli and visually guided movements. I demonstrate that peripheral vision is functionally related to eye-movements and connected to rapid stream of functional areas that process visual motion. In addition, my work shows two different forms of top-down modulation of neural processing in the hierachically lowest cortical levels; one that is related to dorsal stream activation and may reflect motor processing or resetting signals that prepare visual cortex for change in the environment and another local signal enhancement at the attended region that reflects local feed-back signal and may perceptionally increase the stimulus saliency.
Resumo:
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.