909 resultados para Business Intelligence,Data Warehouse,Sistemi Informativi
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
With the proliferation of relational database programs for PC's and other platforms, many business end-users are creating, maintaining, and querying their own databases. More importantly, business end-users use the output of these queries as the basis for operational, tactical, and strategic decisions. Inaccurate data reduce the expected quality of these decisions. Implementing various input validation controls, including higher levels of normalisation, can reduce the number of data anomalies entering the databases. Even in well-maintained databases, however, data anomalies will still accumulate. To improve the quality of data, databases can be queried periodically to locate and correct anomalies. This paper reports the results of two experiments that investigated the effects of different data structures on business end-users' abilities to detect data anomalies in a relational database. The results demonstrate that both unnormalised and higher levels of normalisation lower the effectiveness and efficiency of queries relative to the first normal form. First normal form databases appear to provide the most effective and efficient data structure for business end-users formulating queries to detect data anomalies.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.
Resumo:
Master’s Degree Dissertation
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
There is an increasing awareness that the articulation of forensic science and criminal investigation is critical to the resolution of crimes. However, models and methods to support an effective collaboration between these partners are still poorly expressed or even lacking. Three propositions are borrowed from crime intelligence methods in order to bridge this gap: (a) the general intelligence process, (b) the analyses of investigative problems along principal perspectives: entities and their relationships, time and space, quantitative aspects and (c) visualisation methods as a mode of expression of a problem in these dimensions. Indeed, in a collaborative framework, different kinds of visualisations integrating forensic case data can play a central role for supporting decisions. Among them, link-charts are scrutinised for their abilities to structure and ease the analysis of a case by describing how relevant entities are connected. However, designing an informative chart that does not bias the reasoning process is not straightforward. Using visualisation as a catalyser for a collaborative approach integrating forensic data thus calls for better specifications.
Resumo:
We use CEX repeated cross-section data on consumption and income, to evaluate the nature of increased income inequality in the 1980s and 90s. We decompose unexpected changes in family income into transitory and permanent, and idiosyncratic and aggregate components, and estimate the contribution of each component to total inequality. The model we use is a linearized incomplete markets model, enriched to incorporate risk-sharing while maintaining tractability. Our estimates suggest that taking risk sharing into account is important for the model fit; that the increase in inequality in the 1980s was mainly permanent; and that inequality is driven almost entirely by idiosyncratic income risk. In addition we find no evidence for cyclical behavior of consumption risk, casting doubt on Constantinides and Duffie s (1995) explanation for the equity premium puzzle.
Resumo:
The objective of this master’s thesis is to define Larox´s Product Data present state and future development needs from after sales point of view. In particular the object was to investigate after sales needs, which data related to products need to be managed by using Product Data Management. Empirical material of thesis was collected mainly through interviews, benchmark visits, and personal experience. Among the interviewees were internal stakeholders who are closely related to the product process, as well as external stakeholders. Interviews revealed that each stakeholder group has deviating needs for product data management and that at present all the needs are not met to take the best possible way. The main requirement was availability of up-to-date information, which plays a key role in after sales business. At the end of study is concentrated to find development targets at Larox, especially from after sales point of view. In addition, consideration of how the product data management advantages can utilized in making internal processes more efficient. Development needs are collected together as project descriptions, whose headings are shown at the end of the study.
Resumo:
The target of the thesis was to find out has the decision to outsource part of Filtronic LK warehouse function been profitable. Furthermore, another thesis target was to demonstrate current logistics processes between TPLP and company and find out the targets for developing these processes. The decision to outsource part of logistical funtions have been profitable during the first business year. Partnership includes always business risks. Risk increases high asset specific investments. In the other hand investment to partnership increases mutual trust and commitment between parties. By developing partnership risks and opportunitic behaviour can be decreased. The potential of managing material and data flows between logistic service provider and company observed. By analyzing inventory effiency were highlighted the need for decreasing the capital invested to inventories. The recommendations for managing outsourced logistical funtions were established such as improving partnership, process development, performance measurement and invoice checking.
Resumo:
After decades of mergers and acquisitions and successive technology trends such as CRM, ERP and DW, the data in enterprise systems is scattered and inconsistent. Global organizations face the challenge of addressing local uses of shared business entities, such as customer and material, and at the same time have a consistent, unique, and consolidate view of financial indicators. In addition, current enterprise systems do not accommodate the pace of organizational changes and immense efforts are required to maintain data. When it comes to systems integration, ERPs are considered “closed” and expensive. Data structures are complex and the “out-of-the-box” integration options offered are not based on industry standards. Therefore expensive and time-consuming projects are undertaken in order to have required data flowing according to business processes needs. Master Data Management (MDM) emerges as one discipline focused on ensuring long-term data consistency. Presented as a technology-enabled business discipline, it emphasizes business process and governance to model and maintain the data related to key business entities. There are immense technical and organizational challenges to accomplish the “single version of the truth” MDM mantra. Adding one central repository of master data might prove unfeasible in a few scenarios, thus an incremental approach is recommended, starting from areas most critically affected by data issues. This research aims at understanding the current literature on MDM and contrasting it with views from professionals. The data collected from interviews revealed details on the complexities of data structures and data management practices in global organizations, reinforcing the call for more in-depth research on organizational aspects of MDM. The most difficult piece of master data to manage is the “local” part, the attributes related to the sourcing and storing of materials in one particular warehouse in The Netherlands or a complex set of pricing rules for a subsidiary of a customer in Brazil. From a practical perspective, this research evaluates one MDM solution under development at a Finnish IT solution-provider. By means of applying an existing assessment method, the research attempts at providing the company with one possible tool to evaluate its product from a vendor-agnostics perspective.
Resumo:
The main strengths of professional knowledge-intensive business services (P-KIBS) are knowledge and creativity which needs to be fostered, maintained and supported. The process of managing P-KIBS companies deals with financial, operational and strategic risks. That is why it is reasonable to apply risk management techniques and frameworks in this context. A significant challenge hides in choosing reasonable ways of implementing risk management, which will not limit creative ability in organization, and furthermore will contribute to the process. This choice is related to a risk intelligent approach which becomes a justified way of finding the required balance. On a theoretical level the field of managing both creativity and risk intelligence as a balanced process remains understudied in particular within KIBS industry. For instance, there appears to be a wide range of separate models for innovation and risk management, but very little discussion in terms of trying to find the right balance between them. This study aims to shed light on the importance of well-managed combination of these concepts. The research purpose of the present study is to find out how the balance between creativity and risk intelligence can be managed in P-KIBS. The methodological approach utilized in the study is strictly conceptual without empirical aspects. The research purpose can be achieved through answering the following research supporting questions: 1. What are the characteristics and role of creativity as a component of innovation process in a P-KIBS company? 2. What are the characteristics and role of risk intelligence as an approach towards risk management process implementation in a P-KIBS company? 3. How can risk intelligence and creativity be balanced in P-KIBS? The main theoretical contribution of the study conceals in a proposed creativity and risk intelligence stage process framework. It is designed as an algorithm that can be applied on organizational canvas. It consists of several distinct stages specified by actors involved, their roles and implications. Additional stage-wise description provides detailed tasks for each of the enterprise levels, while combining strategies into one. The insights driven from the framework can be utilized by a vast range of specialists from strategists to risk managers, and from innovation managers to entrepreneurs. Any business that is designing and delivering knowledge service can potentially gain valuable thoughts and expand conceptual understanding from the present report. Risk intelligence in the current study is a unique way of emphasizing the role of creativity in professional knowledge-intensive industry and a worthy technique for making profound decisions towards risks.