969 resultados para Brain tumor
Resumo:
Glioblastoma (GBM; grade IV astrocytoma) is a very aggressive form of brain cancer with a poor survival and few qualified predictive markers. This study integrates experimentally validated genes that showed specific upregulation in GBM along with their protein-protein interaction information. A system level analysis was used to construct GBM-specific network. Computation of topological parameters of networks showed scale-free pattern and hierarchical organization. From the large network involving 1,447 proteins, we synthesized subnetworks and annotated them with highly enriched biological processes. A careful dissection of the functional modules, important nodes, and their connections identified two novel intermediary molecules CSK21 and protein phosphatase 1 alpha (PP1A) connecting the two subnetworks CDC2-PTEN-TOP2A-CAV1-P53 and CDC2-CAV1-RB-P53-PTEN, respectively. Real-time quantitative reverse transcription-PCR analysis revealed CSK21 to be moderately upregulated and PP1A to be overexpressed by 20-fold in GBM tumor samples. Immunohistochemical staining revealed nuclear expression of PP1A only in GBM samples. Thus, CSK21 and PP1A, whose functions are intimately associated with cell cycle regulation, might play key role in gliomagenesis. Cancer Res; 70(16); 6437-47. (C)2010 AACR.
Resumo:
Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.
Resumo:
Oxidation of NADH by rat brain microsomes was stimulated severalfold on addition of vanadate. During the reaction, vanadate was reduced, oxygen was consumed, and H2O2 was generated with a stoichiometry of 1:1 for NADH/O2, as in the case of other membranes. Extra oxygen was found to be consumed over that needed for H2O2 generation specifically when brain microsomes were used. This appears to be due to the peroxidation of lipids known to be accompanied by a large consumption of oxygen. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate has been demonstrated. This activity was obtained specifically with the polymeric form of vanadate and with NADH, and was inhibited by the divalent cations Cu2+, Mn2+, and Ca2+, by dihydroxy-phenolic compounds, and by hemin in a concentration-dependent fashion. In the presence of a small concentration of vanadate, addition of an increasing concentration of Fe2+ gave increasing lipid peroxidation. After undergoing lipid peroxidation in the presence of NADH and vanadate, the binding of quinuclidinyl benzylate, a muscarinic antagonist, to brain membranes was decreased.
Effect of undernutrition on the metabolism of phospholipids and gangliosides in developing rat brain
Resumo:
1. Phospholipid content of brains of 3- or 8-week-old undernourished rats was 7--9% less than that for the corresponding control animals and this deficit could not be made up by rehabilitation. Phosphatidyl ethanolamine and plasmalogen were the components most affected in brains of undernourished rats. 2. Incorporation of 32P into phospholipids by brain homogenates was 28% higher in 3-week-old undernourished rats. It is suggested that enhanced phospholipid metabolism in undernourished animals may be related to behavioural alterations noted previously (Sobotka, Cook & Brodie, 1974). 3. Ganglioside concentrations in 3- and 8-week-old undernourished animals were 14% and 11.5% less respectively than those of the control animals and this difference could be made up by rehabilitation. [14C]Glucosamine incorporation in vivo into brain gangliosides was not affected by undernutrition.
Resumo:
Phenyl and phenolic acids are known to inhibit metabolism of mevalonate in rat brain. The site of inhibition has been found to be mevalonate-5-pyrophosphate decarboxylase. Phenolic acids also inhibited mevalonate-5-phosphate kinase on preincubation. The kinetics showed that p-coumaric acid and isoferulic acid were competing with substrates, mevalonate-5-phosphate or mevalonate-5-pyre phosphate, whereas others showed an uncompetitive type of inhibition. Chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. An improved method for the synthesis of mevalonate-5-phosphate and mevalonate-5-pyrophosphate, labeled at carbon-1, is described.
Resumo:
The three-dimensional (3D) NMR solution structure (MeOH) of the highly hydrophobic δ-conotoxin δ-Am2766 from the molluscivorous snail Conus amadis has been determined. Fifteen converged structures were obtained on the basis of 262 distance constraints, 25 torsion-angle constraints, and ten constraints based on disulfide linkages and H-bonds. The root-mean-square deviations (rmsd) about the averaged coordinates of the backbone (N, Cα, C) and (all) heavy atoms were 0.62±0.20 and 1.12±0.23 Å, respectively. The structures determined are of good stereochemical quality, as evidenced by the high percentage (100%) of backbone dihedral angles that occupy favorable and additionally allowed regions of the Ramachandran map. The structure of δ-Am2766 consists of a triple-stranded antiparallel β-sheet, and of four turns. The three disulfides form the classical ‘inhibitory cysteine knot’ motif. So far, only one tertiary structure of a δ-conotoxin has been reported; thus, the tertiary structure of δ-Am2766 is the second such example.Another Conus peptide, Am2735 from C. amadis, has also been purified and sequenced. Am2735 shares 96% sequence identity with δ-Am2766. Unlike δ-Am2766, Am2735 does not inhibit the fast inactivation of Na+ currents in rat brain Nav1.2 Na+ channels at concentrations up to 200 nM.
Resumo:
Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.
Resumo:
Traumatic brain injury (TBI) affects people of all ages and is a cause of long-term disability. In recent years, the epidemiological patterns of TBI have been changing. TBI is a heterogeneous disorder with different forms of presentation and highly individual outcome regarding functioning and health-related quality of life (HRQoL). The meaning of disability differs from person to person based on the individual s personality, value system, past experience, and the purpose he or she sees in life. Understanding of all these viewpoints is needed in comprehensive rehabilitation. This study examines the epidemiology of TBI in Finland as well as functioning and HRQoL after TBI, and compares the subjective and objective assessments of outcome. The frame of reference is the International Classification of Functioning, Disability and Health (ICF). The subjects of Study I represent the population of Finnish TBI patients who experienced their first TBI between 1991 and 2005. The 55 Finnish subjects of Studies II and IV participated in the first wave of the international Quality of life after brain injury (QOLIBRI) validation study. The 795 subjects from six language areas of Study III formed the second wave of the QOLIBRI validation study. The average annual incidence of Finnish hospitalised TBI patients during the years 1991-2005 was 101:100 000 in patients who had TBI as the primary diagnosis and did not have a previous TBI in their medical history. Males (59.2%) were at considerably higher risk of getting a TBI than females. The most common external cause of the injury was falls in all age groups. The number of TBI patients ≥ 70 years of age increased by 59.4% while the number of inhabitants older than 70 years increased by 30.3% in the population of Finland during the same time period. The functioning of a sample of 55 persons with TBI was assessed by extracting information from the patients medical documents using the ICF checklist. The most common problems were found in the ICF components of Body Functions (b) and Activities and Participation (d). HRQoL was assessed with the QOLIBRI which showed the highest level of satisfaction on the Emotions, Physical Problems and Daily Life and Autonomy scales. The highest scores were obtained by the youngest participants and participants living independently without the help of other people, and by people who were working. The relationship between the functional outcome and HRQoL was not straightforward. The procedure of linking the QOLIBRI and the GOSE to the ICF showed that these two outcome measures cover the relevant domains of TBI patients functioning. The QOLIBRI provides the patients subjective view, while the GOSE summarises the objective elements of functioning. Our study indicates that there are certain domains of functioning that are not traditionally sufficiently documented but are important for the HRQoL of persons with TBI. This was the finding especially in the domains of interpersonal relationships, social and leisure activities, self, and the environment. Rehabilitation aims to optimize functioning and to minimize the experience of disability among people with health conditions, and it needs to be based on a comprehensive understanding of human functioning. As an integrative model, the ICF may serve as a frame of reference in achieving such an understanding.
Resumo:
Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.