998 resultados para Boosting Algorithm
Resumo:
Among different phase unwrapping approaches, the weighted least-squares minimization methods are gaining attention. In these algorithms, weighting coefficient is generated from a quality map. The intrinsic drawbacks of existing quality maps constrain the application of these algorithms. They often fail to handle wrapped phase data contains error sources, such as phase discontinuities, noise and undersampling. In order to deal with those intractable wrapped phase data, a new weighted least-squares phase unwrapping algorithm based on derivative variance correlation map is proposed. In the algorithm, derivative variance correlation map, a novel quality map, can truly reflect wrapped phase quality, ensuring a more reliable unwrapped result. The definition of the derivative variance correlation map and the principle of the proposed algorithm are present in detail. The performance of the new algorithm has been tested by use of a simulated spherical surface wrapped data and an experimental interferometric synthetic aperture radar (IFSAR) wrapped data. Computer simulation and experimental results have verified that the proposed algorithm can work effectively even when a wrapped phase map contains intractable error sources. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
An FFT-based two-step phase-shifting (TPS) algorithm is described in detail and implemented by use of experimental interferograms. This algorithm has been proposed to solve the TPS problem with random phase shift except pi. By comparison with the visibility-function-based TPS algorithm, it proves that the FFT-based algorithm has obvious advantages in phase extracting. Meanwhile, we present a pi-phase-shift supplement to the TPS algorithm, which combines the two interferograms and demodulates the phase map by locating the extrema of the combined fringes after removing the respective backgrounds. So combining this method and FFT-based one, one could really implement the TPS with random phase shift. Whereafter, we systematically compare the TPS with single-interferogram analysis algorithm and conventional three-step phase-shifting one. The results demonstrate that the FFT-based TPS algorithm has a satisfactory accuracy. At last, based on the polarizing interferometry, a schematic setup of two-channel TPS interferometer with random phase shift is suggested to implement the simultaneous collection of interferograms. (c) 2007 Elsevier GrnbH. All rights reserved.
Resumo:
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.
Resumo:
En este proyecto se describirá como construir un modelo predictivo de tipo gradient boosting para predecir el número de ventas online de un producto X del cual solo sabremos su número de identificación, teniendo en cuenta las campañas publicitarias y las características tanto cualitativas y cuantitativas de éste. Para ello se utilizarán y se explicarán las diferentes técnicas utilizadas, como son: la técnica de la validación cruzada y el Blending. El objetivo del proyecto es implementar el modelo así como explicar con exactitud cada técnica y herramienta utilizada y obtener un resultado válido para la competición propuesta en Kaggle con el nombre de Online Product Sales.
Resumo:
This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.