955 resultados para Boolean Computations
Resumo:
This article describes a computational study of viscous effects on lobed mixer flowfields. The computations, which were carried out using a compressible, three-dimensional, unstructured-mesh Navier-Stokes solver, were aimed at assessing the impacts on mixer performance of inlet boundary-layer thickness and boundary-layer separation within the lobe. The geometries analyzed represent a class of lobed mixer configurations used in turbofan engines. Parameters investigated included lobe penetration angles from 22 to 45 deg, stream-to-stream velocity ratios from 0.5 to 1.0, and two inlet boundary-layer displacement thicknesses. The results show quantitatively the increasing influence of viscous effects as lobe penetration angle is increased. It is shown that the simple estimate of shed circulation given by Skebe et al. (Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Field, AIAA Paper 88-3785, July, 1988) can be extended even to situations in which the flow is separated, provided an effective mixer exit angle and height are defined. An examination of different loss sources is also carried out to illustrate the relative contributions of mixing loss and of boundary-layer viscous effects in cases of practical interest.
Resumo:
The work in this paper forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. Here we focus on LES of the flow field near a fan blade trailing edge. The first part of the paper aims to evaluate LES suitability for predicting the near-field velocity field for a blunt NACA-0012 airfoil at moderate Reynolds numbers (2× 10 5 and 4× 10 5). Preliminary computations of turbulent mean and root-mean-square velocities, as well as energy spectra at the trailing edge, are compared with those from a recent experiment.1 The second part of the paper describes preliminary progress on an LES calculation of the fan wakes on a fan rig. 2 The CFD code uses a mixed element unstructured mesh with a median dual control volume. A wall-adapting local eddy-viscosity sub-grid scale model is employed. A very small amount of numerical dissipation is added in the numerical scheme to keep the compressible solver stable. Further results for the fan turbulentmean and RMS velocity, and especially the aeroacoustics field will be presented at a later stage. Copyright © 2008 by Qinling LI, Nigel Peake & Mark Savill.
Resumo:
The objective of the present study is to assess the capabilities of a recently developed mechanism-based model for inelastic deformation and damage in structural ceramics. In addition to conventional lattice plasticity, the model accounts for microcrack growth and coalescence as well as granular flow following comminution. The assessment is made through a coupled experimental/computational study of the indentation response of a commercial armor ceramic. The experiments include examinations of subsurface damage zones along with measurements of residual surface profiles and residual near-surface stresses. Extensive finite element computations are conducted in parallel. Comparisons between experiment and simulation indicate that the most discriminating metric in the assessment is the spatial extent of subsurface damage following indentation. Residual stresses provide additional validation. In contrast, surface profiles of indents are dictated largely by lattice plasticity and thus provide minimal additional insight into the inelastic deformation resulting from microcracking or granular flow. A satisfactory level of correlation is obtained using property values that are either measured directly or estimated from physically based arguments, without undue reliance on adjustable (nonphysical) parameters. © 2011 The American Ceramic Society.
Resumo:
In this article the UDF script file in the Fluent software was rewritten as the "connecting file" for the Fluent and the ANSYS/ABAQUS in order that the joined file can be used to do aero-elastic computations. In this way the fluid field is computed by solving the Navier-Stokes equations and the structure movement is integrated by the dynamics directly. An analysis of the computed results shows that this coupled method designed for simulating aero-elastic systems is workable and can be used for the other fluid-structure interaction problems.
Resumo:
The LURR theory is a new approach for earthquake prediction, which achieves good results in earthquake prediction within the China mainland and regions in America, Japan and Australia. However, the expansion of the prediction region leads to the refinement of its longitude and latitude, and the increase of the time period. This requires increasingly more computations, and the volume of data reaches the order of GB, which will be very difficult for a single CPU. In this paper, a new method was introduced to solve this problem. Adopting the technology of domain decomposition and parallelizing using MPI, we developed a new parallel tempo-spatial scanning program.
Resumo:
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.
Resumo:
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.
Resumo:
According to the experimental results, there exist large-scale coherent structures in the outer region of a turbulent boundary layer, which have been studied by many authors.As experimental results, Antonia (1990) showed the phase- aver aged streamlines and isovorticity lines of the large-scale coherent structures in a turbulent boundary layer for different Reynolds numbers. Based on the hydrodynamic stability theory, the 2-D theoretical model for the large-scale structures was proposed by Luo and Zhou, in which the eddy viscosity was defined as a complex function of the position in the normal direction. The theoretical results showed in ref. were in agreement with those in ref. However, there were two problems in the results. One is that in the experimental results, there were divergent focuses between two saddle points in the streamlines, but in the theoretical results, there were centers. The other is that the stretched parts of the isovorticity lines appear at the location of centers in the theoretical results, while in the experimental results they located somewhere between the focuses and saddle points. The reason is that the computations were based on a 2-D model.
Resumo:
Plastic stress-strain fields of two types of steel specimens loaded to large deformations are studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to have substantial effects on strain distributions and blunting. To justify the constitutive equations used for analysis and to check the precision of computations, the load-deflection of a three-point bend beam and the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The computed curves are in good accordance with experimental data.
Resumo:
Dilatational plastic equations, which can include the effects of ductile damage, are derived based on the equivalency in expressions for dissipated plastic work. Void damage developed internally at the large-strain stage is represented by an effective continuum being strain-softened and plastically dilated. Accumulation of this local damage leads to progressive failure in materials. With regard to this microstructural background, the constitutive parameters included for characterizing material behaviour have the sense of internal variables. They are not able to be determined explicitly by macroscopic testing but rather through computer simulation of experimental curves and data. Application of this constitutive model to mode-I cracking examples demonstrates that a huge strain concentration accompanied by a substantial drop of stress does occur near the crack tip. Eventually, crack propagation is simulated by using finite elements in computations. Two numerical examples show good accordance with experimental data. The whole procedure of study serves as a justification of the constitutive formulation proposed in the text.
Resumo:
In this paper we analyze the valuation of options stemming from the flexibility in an Integrated Gasification Combined Cycle (IGCC) Power Plant. First we use as a base case the opportunity to invest in a Natural Gas Combined Cycle (NGCC) Power Plant, deriving the optimal investment rule as a function of fuel price and the remaining life of the right to invest. Additionally, the analytical solution for a perpetual option is obtained. Second, the valuation of an operating IGCC Power Plant is studied, with switching costs between states and a choice of the best operation mode. The valuation of this plant serves as a base to obtain the value of the option to delay an investment of this type. Finally, we derive the value of an opportunity to invest either in a NGCC or IGCC Power Plant, that is, to choose between an inflexible and a flexible technology, respectively. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for the fuel prices. Basic parameter values refer to an actual IGCC power plant currently in operation.
Resumo:
[ES] Para más información véase el trabajo LDGP_mem_003-2: "Estudio topográfico de las deformaciones del conjunto arquitectónico de la iglesia de Nuestra Señora de la Blanca (Agoncillo, La Rioja) [Julio 2007 – Octubre 2009]", http://hdl.handle.net/10810/7050
Resumo:
The high Reynolds number flow contains a wide range of length and time scales, and the flow
domain can be divided into several sub-domains with different characteristic scales. In some
sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some
sub-domains, the viscosity dissipation scales need to be considered in all directions; in some
sub-domains, the viscosity dissipation scales are unnecessary to be considered at all.
For laminar boundary layer region, the characteristic length scales in the streamwise and normal
directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in
the outer region of the boundary layer are L and U, respectively. In the neighborhood region of
the separated point, the length scale l<
Resumo:
Through the coupling between aerodynamic and structural governing equations, a fully implicit multiblock aeroelastic solver was developed for transonic fluid/stricture interaction. The Navier-Stokes fluid equations are solved based on LU-SGS (lower-upper symmetric Gauss-Seidel) Time-marching subiteration scheme and HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) spacing discretization scheme and the same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Transfinite interpolation (TFI) is used for the grid deformation of blocks neighboring the flexible surfaces. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between fluid and structure. The developed code was fort validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. In the subsonic and transonic range, the calculated flutter speeds and frequencies agree well with experimental data, however, in the supersonic range, the present calculation overpredicts the experimental flutter points similar to other computations. Then the flutter character of a complete aircraft configuration is analyzed through the calculation of the change of structural stiffness. Finally, the phenomenon of aileron buzz is simulated for the weakened model of a supersonic transport wing/body model at Mach numbers of 0.98 and l.05. The calculated unsteady flow shows, on the upper surface, the shock wave becomes stronger as the aileron deflects downward, and the flow behaves just contrary on the lower surface of the wing. Corresponding to general theoretical analysis, the flow instability referred to as aileron buzz is induced by a stronger shock alternately moving on the upper and lower surfaces of wing. For the rigid structural model, the flow is stable at all calculated Mach numbers as observed in experiment